ELECTRIC REGULATQR

RM5G Supplemental User Manual

Danger
 Hazardous High Voltage

Ground the control before servicing
Remove all power and wait until all the control has discharged.
Measuring the voltage of terminals P and N to verified it has discharged.
Failure to comply will result in death or serious injury.

Warning

Separate over current protection is required by the national electric code. The user is responsible for conforming with the national electric code and all applicable local codes which govern such practices as wiring protection, grounding, disconnects and other current protection.

Warning
 Never exceed the maximum input voltage
 Exceeding the maximum input voltage causes catastrophic failure.
 Repair is impractical the control should be replaced.

Warning

The RM5G is for 3 phase induction motors only.
The RM5G will damage capacitor start single phase motors.

CAUTION

Before MEGGER or DIELECTRIC testing the AC motor.
Disconnect the AC motor from the RM5G control.
Megger or dielectric testing will damage the control.

Blank Page

Table of Contents

Section 1) Receiving and Specifications

Pg. 5
Pg. 5
Pg. 5
Pg. 6
Pg. 7

Pg. 9
Pg. 9
Pg. 10
Pg. 11
Pg. 11
Pg. 12
Pg. 13

Pg. 14
Pg. 14
Pg. 14
Pg. 14
Pg. 15
Pg. 16

Pg. 17
Pg. 18
Pg. 19
Pg. 20
Pg. 20
Pg. 21
Pg. 22
Pg. 23
Pg. 24
Pg. 24
Pg. 25
Pg. 25
Pg. 25
Pg. 25
Pg. 26
Pg. 26
Pg. 26
Pg. 27
Pg. 29
Pg. 30
Pg. 30
Pg. 31
Pg. 31
Pg. 31
Pg. 31
1.1) Physical Inspection
1.2) Input Power and Motor Specifications
1.2) Model Number Scheme
1.3) Common Specifications
1.4) Electric Power Specifications

Section 2) Installation
2.1) Operating Environment
2.2) Motor Selection
2.3) AC Line Reactors
2.4) Wire Size \& AC Power and Motor Connections
2.5) Switching Frequency (i.e. Carrier Frequency)
2.6) Main Control Card Diagrams
2.7) Elementary Diagram of RM5G

Section 3) The Fundamentals
3.1) Keypad Operation
3.2) Programing with positive and negative numbers
3.3) Operating the RM5G without the keypad
3.4) How to restore the factory program
3.5) Quick Guide (to the most commonly used function codes)
3.6) Fundamental Motor and Electrical Parameters

Section 4) Programming Instructions
4.01) Speed Adjustment (i.e. Speed Reference)
4.02) Digital Speed Adjustment
4.03) Analog Input Signal Scale (i.e. Speed Signal Scale)
4.04) Analog Inputs Vin and Iin Features
4.04) Transferring Command between Vin and Iin
4.05) Stop, Start, Forward and Reverse
4.06) Dynamic Braking
4.07) DC Braking
4.08) Power Interruption Response
4.09) Power Interruption Controlled Stop Programing
4.10) Frequency Scale of Acceleration \& Deceleration
4.11) Acceleration \& Deceleration Time
4.12) Secondary Acceleration \& Deceleration Time
4.13) S-curve Starting, Leveling and Stopping
4.14) Digital Inputs X1 through X6 Programing
4.15) Positive Logic and Negative Logic
4.16) Sink or Source
4.17) Digital Inputs X1 through X6 Reference
4.18) Pre-set Speed Levels
4.19) Digital Outputs Y1, Y1 and relays T1, T2
4.20) Analog Outputs (i.e. Analog Meters)
4.21) Keypad Default Display
4.22) User Defined Meter (i.e. MPM)
4.23) DM-501 Digital Meters (Optional Item)
4.24) DM-501 Digital Meter Connection Diagram
Section 4) Programming Instructions continued
4.25) Voltage Frequency Patterns (V/F Pattern)
4.26) Frequency Adjustment Range
4.27) Frequency Bypass
4.28) Motor Ratings and Overload Parameters
4.29) Motor Slip and Stall Parameters
4.30) Level Speed Detection Signal Bandwidth for Y1, Y2, T1 and T2
4.31) Motor Starting Parameters
4.32) Switching Frequency (i.e. Carrier Frequency)
4.33) Holding the Motor Stationary
4.34) Store and Copy Programs
4.35) Restoring the Factory Default Settings
4.36) Locking Programs \& 120 Hz or 400 Hz Operation
4.37) Fault History
4.38) Limit of General Fault Pass-Throughs

Section 5) Analog Keypad KP-202C (Optional Feature)

5.1) KP-202C Factory Default Settings
5.2) RSW selects the LED display
5.3) Programming the Adjustment Pots (ADJ and Knob)
5.4) DIP Switch Programming

Appendix

Fault Code Table
Clearing Faults (Reset)
Keypad Mounting Dimensions
RM5G Physical Dimensions
Function Code Record
Function Code Table
RM5G Elementary Diagram

Pg. 32
Pg. 33
Pg. 33
Pg. 34
Pg. 35
Pg. 35
Pg. 36
Pg. 36
Pg. 36
Pg. 37
Pg. 37
Pg. 37
Pg. 37
Pg. 37

Pg. 41
Pg. 41
Pg. 42
Pg. 43

Pages 46 and 47
Pg. 54
Pg. 48
Pages 49 through 52
Pg. 54
Pages 55 through 59
Pg. 60

Alphabetical Index

Pg. 10
Pg. 25
Pg. 19
Pg. 20
Pg. 30
Pg. 54
Pg. 6
Pg. 23
Pg. 18
Pg. 26
Pg. 27
Pg. 30
Pg. 43
Pg. 31
Pg. 31
Pg. 22
Pg. 7
Pg. 13
Pages 46 and 47
Pg. 37

Pg. 54
Pg. 16
Pg. 36
Pg. 14
Pg. 5
Pg. 14
Pg. 31
Pg. 48
Pg. 41
Pg. 35
Pg. 37
Pg. 37
Pg. 12
Pg. 5
Pg. 9
Pg. 34
Pg. 35
Pg. 36
Pg. 9
Pg. 14
Pg. 5
Pg. 26
Pg. 24

Pg. 25 4.10) Frequency Scale of Acceleration \& Deceleration
Pg. 33 4.26) Frequency Adjustment Range
Pg. 33 4.27) Frequency Bypass
Pages 55 through 59 Function Code Table
3.6) Fundamental Motor and Electrical Parameters
4.33) Holding the Motor Stationary
2.3) AC Line Reactors
4.11) Acceleration \& Deceleration Time
4.03) Analog Input Signal Scale (i.e. Speed Signal Scale)
4.04) Analog Inputs Vin and Iin Features
4.20) Analog Outputs (i.e. Analog Meters)

Clearing Faults (Reset)
1.3) Common Specifications
4.07) DC Braking
4.02) Digital Speed Adjustment
4.14) Digital Inputs X1 through X6 Programing
4.17) Digital Inputs X1 through X6 Reference
4.19) Digital Outputs Y1, Y1 and relays T1, T2
5.4) DIP Switch Programming
4.23) DM-501 Digital Meters (Optional Item)
4.24) DM-501 Digital Meter Connection Diagram
4.06) Dynamic Braking
1.4) Electric Power Specifications
2.7) Elementary Diagram of RM5G

Fault Code Table
Fault History

Function Code Record
3.4) How to restore the factory program
1.2) Input Power and Motor Specifications
3.1) Keypad Operation
4.21) Keypad Default Display

Keypad Mounting Dimensions
5.1) KP-202C Factory Default Settings
4.30) Level Speed Detection Signal Bandwidth for Y1, Y2, T1 and T2
4.38) Limit of General Fault Pass-Throughs
4.36) Locking Programs \& 120 Hz or 400 Hz Operation
2.6) Main Control Card Diagrams
1.2) Model Number Scheme
2.2) Motor Selection
4.28) Motor Ratings and Overload Parameters
4.29) Motor Slip and Stall Parameters
4.31) Motor Starting Parameters
2.1) Operating Environment
3.3) Operating the RM5G without the keypad
1.1) Physical Inspection
4.15) Positive Logic and Negative Logic
4.08) Power Interruption Response

Alphabetical Index continued

Pg. 24	4.09)	Power Interruption Controlled Stop Programing
Pg. 29	4.18)	Pre-set Speed Levels
Pg. 14	3.2)	Programing with positive and negative numbers
Pg. 42	5.3)	Programming the Adjustment Pots (ADJ and Knob)
Pg. 15	3.5)	Quick Guide (to the most commonly used function codes)
Pg. 37	4.35)	Restoring the Factory Default Settings
Pages 4	gh 52	RM5G Physical Dimensions
Pg. 60		RM5G Elementary Diagram
Pg. 41	5.2)	RSW selects the LED display
Pg. 25	4.13)	S-curve Starting, Leveling and Stopping
Pg. 25	4.12)	Secondary Acceleration \& Deceleration Time
Pg. 26	4.16)	Sink or Source
Pg. 17	4.01)	Speed Adjustment (i.e. Speed Reference)
Pg. 21	4.05)	Stop, Start, Forward and Reverse
Pg. 37	4.34)	Store and Copy Programs
Pg. 11	2.5)	Switching Frequency (i.e. Carrier Frequency)
Pg. 36	4.32)	Switching Frequency (i.e. Carrier Frequency)
Pg. 20	4.04)	Transferring Command between Vin and Iin
Pg. 31	4.22)	User Defined Meter (i.e. MPM)
Pg. 32	4.25)	Voltage Frequency Patterns (V/F Pattern)
Pg. 11	2.4)	Wire Size \& AC Power and Motor Connections

Section 1) Receiving \& Storage

Section 1.1) Physical Inspection

When you receive the RM5G AC drive, avoid shock or vibration when unloading and transporting the unit. This can damage the semiconductors or other components.

Immediately upon receipt inspect the unit for the following;

- Check to be certain the unit is clean of packing materials.
- Check for damage incurred during shipment, dents, scratches, etc.
- Inspect mechanical the parts, loose screws, terminals, etc.
- Inspect for, damaged, loose or shorted electronic components or connections.
- If you find damage, don't connect power to it. The unit must be replaced or repaired. Connecting power could result in fire or further damage and could void warranty.

Promptly report damage or problems you found during inspection to Electric Regulator Corp. Telephone (760) 438-7873 Fax (760) 438-0437 or Sales@ElectricRegulator.com

Store the AC drive in a clean dry place in the package it was in shipped. Avoid storing the unit in a location with high temperatures, humidity, dust or corrosive gases. Outdoor storage is not recommended.

Section 1.2) Input Power \& Motor Rating

Check the identification label to confirm that the input power and the motor's ratings are compatible with the drive.

- Identification Label On the drive please find the label as shown below to verify the specifications are compatible with the motor. See example below:

ISO 9001 IP20	
TYPE	RM5G-2050
INPUT	3PH 200-240V 176A 50/60Hz
OUTPUT	$3 P H$ 200-240V 145A 0.1-400Hz
PGM NO.	$103 F 4-1(A Z X X X X X X)$
SERIAL NO.	$B X X X X X X X X$

- Model Number Scheme
$\frac{R M 5 G}{A}-\frac{2}{B} \frac{050}{C} \frac{B}{D} \frac{-1 P H}{E}$

A: RM5G........ Model Series Number
B: 1................. Voltage 100 V to 120 V
2................. Voltage 200V to 240 V
4................. Voltage 440V to 480V

C: 050............. Horsepower: Example 50 HP
D: B................ Indicates built in Dynamic Braking Transistor, if blank not included
E: -1PH........... Indicates single phase input power, blank indicates three phase input power

- Motor Specification Inverter duty motor compatible with IGBT variable frequency power.

Section 1.3) Common Specifications

	Output Signal	Alternating Current Pulse Width Modulation (PWM) Synthesizes sinusoidal wave
	Frequency Range	0.01 to 400 Hz (see function code F092)

Page 6

Section 1.4) Electric Power Specifications

Single Phase Input Power converted to Three Phase Output Power

Model Number						
Horsepower	1/2	1	2	1/2	1	2
Input Power (V, ف, Hz)	100 to $120 \mathrm{~V}, 1 \phi .50$ to 60 Hz			200 to 240V, 1d, 50 to 60 Hz		
Permissible Input Power Fluctuation	$90 \sim 132 \mathrm{~V}, 50$ to $60 \mathrm{~Hz},+/-5 \%$			$176 \sim 264 \mathrm{~V}, 50$ to $60 \mathrm{~Hz},+/-5 \%$		
Input Amps Required	8.8	18	24	7	13.5	19
Output Amp Rating	2.5	4.2	6	3	5	8
Max. Output Voltage	$200 \sim 240 \mathrm{~V} / 3 \phi$			$200 \sim 240 \mathrm{~V} / 3 \phi$		
Output Frequency Range	0.01 to 400 Hz			0.01 to 400 Hz		
Overload Rating	Permits 150\% overload for 1 minute			Permits 150\% overload for 1 minute		
Enclosure Rating	IP20			IP20		

200V to 240V, Three Phase Input Power

Model Number	$\stackrel{\rightharpoonup}{0}$ N N N	$\begin{aligned} & \text { N } \\ & \text { ò } \\ & \text { N } \\ & \sum_{n}^{n} \end{aligned}$		$\begin{aligned} & \text { no } \\ & \text { N } \\ & \text { N } \\ & \sum_{n}^{n} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N } \\ & \sum_{n}^{n} \end{aligned}$		n o N j \sum_{n}^{n}	$\begin{aligned} & \text { ò } \\ & \text { ò } \\ & \text { N } \\ & \sum_{n}^{n} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N } \\ & \sum_{n}^{n} \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { N} \\ & \text { N} \\ & \sum_{n}^{n} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N} \\ & \text { N } \\ & \sum_{n}^{n} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { O} \\ & \text { N } \\ & \text { b } \\ & \sum_{n}^{n} \end{aligned}$	$\begin{aligned} & \hat{Q} \\ & \text { N } \\ & \vdots \\ & \sum_{n}^{n} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { 人̀ } \\ & \text { U } \\ & \sum_{n}^{n} \end{aligned}$
Horsepower	1	2	3	5	7.5	10	15	20	25	30	40	50	60	75
Input Amperes Required (A)	6	10	14	18	30	40	60	69	85	103	132	176	200	240
Output Ampere Rating (A)	5	8	11	17	25	33	46	60	74	90	115	145	175	220
Input Power (V/ V / Hz)	200 to $240 \mathrm{~V} / 3 \phi / 50$ to 60 Hz													
Permissible Input Power Fluctuation	176 ~ 264V / 50 to $60 \mathrm{~Hz}+/-5 \%$													
Output Voltage Rating (V)	200 to $240 \mathrm{~V} / 3 \phi$													
Output Frequency Range (Hz)	0.01 to 400 Hz													
Overload Rating	Permits 150\% overload for one minute													
Enclosure Rating	IP20													

440V to 480V, Three Phase Input Power

Model Number						$\begin{aligned} & \hat{N} \\ & \text { o } \\ & \vdots \\ & \dot{y} \\ & \sum_{n}^{n} \end{aligned}$	$\begin{array}{\|c} 0 \\ o \\ o \\ \vdots \\ u \\ \sum_{n}^{n} \\ 2 \end{array}$				o o + \vdots \vdots \sum_{n}^{n}			$\begin{aligned} & \text { no } \\ & \hat{0} \\ & \vdots \\ & \vdots \\ & \sum_{n}^{n} \end{aligned}$	$\begin{aligned} & 8 \\ & \overrightarrow{7} \\ & \dot{j} \\ & \sum_{n}^{n} \end{aligned}$	\circ 7 7 \sum_{n} \sum_{n}^{n}	8 $\stackrel{\rightharpoonup}{7}$ \vdots \sum_{n}^{n} \sum_{n}^{n}	$\begin{aligned} & \text { oे } \\ & \text { N } \\ & \vdots \\ & \vdots \\ & \sum_{n}^{n} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { F } \\ & \vdots \\ & \sum_{n}^{n} \end{aligned}$		$\begin{aligned} & \text { o} \\ & \text { O} \\ & \vdots \\ & \vdots \\ & \sum_{n}^{n} \end{aligned}$
Horsepower	1	2	3		5	7.5	10	15	20	30	40	50	60	75	100	150	200	300	420	500	600
Input Amperes Required (A)	3.5	5	8		12	16	22	28	38	52	70	84	100	130	155	196	282	385	540	650	800
Output Ampere Rating (A)	2.5	4	6		9	14	18	24	30	45	61	73	87	110	137	210	304	415	585	700	860
Input Power (V/ $/$ / Hz)	380 to $480 \mathrm{~V} / 3 \phi / 50$ to 60 Hz																				
Permissible Input Power Fluctuation	$323 \mathrm{~V} \sim 506 \mathrm{~V} / 50$ to $60 \mathrm{~Hz}+/-5 \%$																				
Output Voltage Rating (V)	380 V to 480V / 3ϕ																				
Output Frequency Range (Hz)	0.01 to 400 Hz																				
Overload Rating	Permits 150\% overload for one minute																				
Enclosure Rating	IP20																				

Blank Page

Section 2) Installation

Section 2.1) Operating Environment

The RM5G AC drive should be located in a operating environment that meets the following conditions.

- Ambient Temperature between 14° to 122° Fahrenheit (-10° to 50° Celsius).
- Relative Humidity Avoid locations exceeding RH 90\%.
- Condensation Do not locate the unit where condensation occurs.
- Altitude If located above $1000 \mathrm{~m} / 3280 \mathrm{ft}$ above sea level, see table for power derating.

- Corrosion Avoid locations with corrosive gases or liquids; example: ocean air.
- Contamination Avoid locations subject to dust or iron particles.
- Hazardous Gases \& Liquids The RM5G is not designed for explosive environments. Do not locate the unit were it is subject to combustible or flammable gases or liquids.
- Ventilation Mount the unit in a lengthwise vertical position to ensure proper cooling ventilation. Provide not less than 5 inches (125 mm) top and bottom and 2 inches (50 mm) each side of clear space around the unit. If the unit is in a sealed enclosure, provide adequate ventilation for air flow from top to bottom.
- \quad Shock \& Vibration Avoid mounting the unit in a location subject to shock or vibration.

Section 2.2) Motor Selection

- The motor should be a standard three phase induction motor. The minimum insulation requirement is 100 M at 500 V . Most modern motors meet or exceed this requirement. Submersible motors may fail due to sand and other contaminates abrading the insulation.
- Inverter duty motor compatible with IGBT variable frequency power.
- If the normal speed is above 15 Hz a self ventilated motor normally adequate.
- If the motor speed is under 15 Hz for more than several minutes, separately powered ventilation for the motor is required.
- The resonance frequency of a typical motor is somewhere between 6 Hz to 9 Hz . If you plan to run close to the resonance frequency, read page 16 section 4.16, Frequency Bypass.
- If you run the motor above 60 Hz , see page 37, section 4.36

Section 2.3) AC Line Reactors (ACL)

AC line reactors should be used in the following circumstances.

- If four or more AC drives are connected to the same input power.
- If the AC drive input power is shared with equipment that have IGBT's or SCR's. Typical examples are induction heaters, DC drives or welders.
- If the input power lines are very long or share power with equipment that are a long distance from the AC drive. (Long distances often amplify bad power harmonics)
- If the output power lines are very long, typically more than 40 feet.

200~240V Table

HP	Inputs R, S, T		Outputs U, V, w	
	Inductance	Amperes	Inductance	Amperes
1	0.45 mH	15 A	0.45 mH	15 A
2	0.45 mH	15 A	0.45 mH	15 A
3	0.45 mH	15 A	0.45 mH	15 A
5	0.2 mH	30 A	0.2 mH	30 A
7.5	0.2 mH	30 A	0.2 mH	50 A
10	0.13 mH	50 A	0.2 mH	50 A
15	0.13 mH	50 A	0.07 mH	75 A
20	0.07 mH	75 A	0.05 mH	100 A
25	0.05 mH	100 A	0.05 mH	100 A
30	0.05 mH	150 A	0.035 mH	150 A
40	0.035 mH	150 A	0.025 mH	200 A
50	0.025 mH	200 A	0.025 mH	200 A
60	0.025 mH	200 A	0.015 mH	300 A

440~480V Table

H HP	Inputs R, S, T		Outputs U, V, W	
	Inductance	Amperes	Inductance	Amperes
1	0.45 mH	15 A	0.45 mH	15 A
2	0.45 mH	15 A	0.45 mH	15 A
3	0.4 mH	15 A	0.45 mH	15 A
5	0.45 mH	15 A	0.45 mH	15 A
7.5	0.2 mH	30 A	0.2 mH	30 A
10	0.2 mH	30 A	0.2 mH	30 A
15	0.2 mH	50 A	0.13 mH	50 A
20	0.13 mH	50 A	0.13 mH	50 A
25	0.13 mH	50 A	0.13 mH	50 A
30	0.13 mH	75 A	0.07 mH	75 A
40	0.07 mH	75 A	0.05 mH	100 A
50	0.05 mH	100 A	0.05 mH	100 A
60	0.05 mH	150 A	0.035 mH	150 A
75	0.035 mH	150 A	0.025 mH	200 A
100	0.025 mH	200 A	0.025 mH	200 A
150	0.015 mH	300 A	0.015 mH	300 A
200	0.013 mH	400 A	0.013 mH	400 A
250	0.013 mH	600 A	0.01 mH	600 A
300	0.01 mH	600 A	0.01 mH	600 A
350	0.01 mH	600 A	0.006 mH	800 A
420	0.006 mH	800 A	0.006 mH	800 A
500	0.006 mH	800 A	0.005 mH	1000 A
600	0.005 mH	1000 A	0.005 mH	1000 A

Section 2.4) Wire Size Table and AC Power and Motor Connections

Input: 220 $\mathrm{V}_{\mathrm{AC}} / 3$ Phase / 60 Hz			
HP	200% Load AC Amps	Recommended Wire Size	Circuit Breaker AC Amps at $250 \mathrm{~V}_{\mathrm{AC}}$
1	3.9	14 AWG	5
2	7.9	14 AWG	10
3	11.8	14 AWG	15
5	19.68	12 AWG	25
7.5	29.52	10 AWG	30
10	39.36	8 AWG	40
15	59.05	6 AWG	70
20	78.73	4 AWG	90
25	98.41	3 AWG	100
30	118.09	1 AWG	125
40	157.46	00 AWG	175
50	196.82	000 AWG	200
60	224.38	0000 AWG	225
75	295.24	300 MCM	300
100	393.65	500 MCM	400
125	492.06	(2) 250 MCM	500
150	590.47	(2) 350 MCM	600

Input: 460 $\mathrm{V}_{\mathrm{AC}} / 3$ Phase / 60 Hz			
HP	$200 \% ~ L o a d ~$ AC Amps	Recommended Wire Size	Circuit Breaker AC Amps at 600V
1	1.9	14 AWG	5
2	3.8	14 AWG	5
3	5.7	14 AWG	10
5	9.41	14 AWG	10
7.5	14.12	14 AWG	15
10	18.83	12 AWG	20
15	28.24	10 AWG	30
20	37.65	8 AWG	40
25	47.07	8 AWG	50
30	56.48	6 AWG	60
40	75.31	4 AWG	75
50	94.13	4 AWG	100
60	112.96	3 AWG	125
75	141.2	1 AWG	150
100	188.27	00 AWG	200
125	235.33	0000 AWG	250
150	282.4	250 MCM	300

Output: Variable $0 \sim 60 \mathrm{~Hz} / 0 \sim 220$ Volts		
HP	$200 \% ~ L o a d ~$ DC Amps	Recommended Wire Size for 40 ft length
1	3.9	14 AWG
2	7.9	12 AWG
3	11.8	12 AWG
5	19.68	10 AWG
7.5	29.52	8 AWG
10	39.36	6 AWG
15	59.05	4 AWG
20	78.73	2 AWG
25	98.41	1 AWG
30	118.09	0 AWG
40	157.46	0000 AWG
50	196.82	250 MCM
60	224.38	300 MCM
75	295.24	500 MCM
100	393.65	(2) 250 MCM
125	492.06	(2) 350 MCM
150	590.47	(2) 500 MCM

Output: Variable $0 \sim 60 \mathrm{~Hz} / 0 \sim 460$ Volts		
HP	200% Load DC Amps	Recommended Wire Size for 40 ft length
1	1.9	14 AWG
2	3.8	14 AWG
3	5.7	14 AWG
5	9.41	12 AWG
7.5	14.12	12 AWG
10	18.83	10 AWG
15	28.24	8 AWG
20	37.65	8 AWG
25	47.07	6 AWG
30	56.48	4 AWG
40	75.31	3 AWG
50	94.13	2 AWG
60	112.96	1 AWG
75	141.2	00 AWG
100	188.27	0000 AWG
125	235.33	300 MCM
150	282.4	(2) 000 AWG

Section 2.5) Switching Frequency (i.e. Carrier Frequency)

Longer wires require lower carrier frequency. Function code F 081 programs the carrier frequency.

Wire Length	Under $12 \mathrm{~m} / 40 \mathrm{ft}$	$12 \mathrm{~m} / 40 \mathrm{ft}$	$25 \mathrm{~m} / 80 \mathrm{ft}$	$50 \mathrm{~m} / 160 \mathrm{ft}$	$100 \mathrm{~m} / 320 \mathrm{ft}$	Over 100 m
$1 / 2$ to 5 HP	10 kHz	7.5 kHz	5 kHz	2.5 kHz	800 Hz	800 Hz
$71 / 2$ to 10 HP	10 kHz	7.5 kHz	5 kHz	2.5 kHz	800 Hz	800 Hz
15 to 30 HP	7.5 kHz	5 kHz	2.5 kHz	2.5 kHz	800 Hz	800 Hz
40 to 75 HP	5 kHz	5 kHz	2.5 kHz	2.5 kHz	800 Hz	800 Hz
100 to 700 HP	2.5 kHz	2.5 kHz	2.5 kHz	800 Hz	800 Hz	800 Hz

F 081	Switching Frequency	Factory Defaults	$0) 800 \mathrm{~Hz}$	$3) 7.5 \mathrm{kHz}$	$6) 15.0 \mathrm{kHz}$
	(i.e. Carrier Frequency)		$4) 10.0 \mathrm{kHz}$		
			$2) 5.0 \mathrm{kHz}$	5.5 kHz	

Section 2.6) Main Control Card Diagrams

Main Control Card from $1 / 2$ HP to 5 HP

Main Control Card for $71 / 2$ HP and above

Section 2.7) Elementary Diagram of RM5G

RM5G Elementary Diagram

Section 3.1) KP-201B Keypad Operation

The keypad has four operating modes.

- Monitoring Mode (default)
- Data Mode (Meter)
- Function Code Menu (Scrolls up and down from F 000 to F 134)
- Programming Mode (Edits the function codes)

When the power is switched on, the keypad LED display is in monitoring mode. In monitoring mode the default display is the frequency (Hz) output to the motor. The default display can be changed to the user's preference, see following example.

Example of how to program.

In this example you will change the default display to RPM. Press the PROG key to enter the function code menu. The function codes are numbered from F 000 through F 134. Then use the arrow keys to scroll up and down through the function codes, scroll to F 006. To change the program of F 006, press the FUN/DATA key to enter F006. Then used the arrow keys to scroll to the number 6 (RPM, see table below) then press the FUN/DATA key to exit F 006 and then press the PROG key to exit out of the function code menu. The default display should now be RPM.

Function code table for F 006

F 006	Keypad	1) Hz Output	4) DC Voltage (PN)	7) User Defined Meter
	Default Display			
	(Factory Default: 1) Speed Adjustment Hz	5) Amperage Output	8) Terminal Status	
	2) Voltage Output	6) RPM		

Section 3.2) Programing with positive and negative numbers.

The input and output terminals programs have positive and negative numbers. Positive numbers are for positive logic, closing the circuit engages the program and negative numbers are for negative logic, opening the circuit engages the program. For more information see section 4.15 on page 26.

Section 3.3) Operating the RM5G with out the keypad.

The RM5G will operate without the keypad, when the RM5G is operated by terminals Vin, GND, FWD and REV or digital operation. If more programing is required, reconnected the keypad.

Section 3.4) How to Restore the Factory Default Program.

Press the PROG key to enter function code menu, then use the arrow key to scroll to F 134, then press the FUN/DATA key. Then scroll until dEF60 is displayed, press and hold down the FUN/DATA key until the word "end" is displayed. All the function codes have been set to the factory defaults for 60 Hz operation.

Section 3.5) Programming Quick Guide (to the most commonly used function codes)

This page covers the most commonly used function codes for quick reference.
The RM5G default settings are for keypad operation. The motor will start when the run key is pressed and the arrow keys adjust the speed. When the RM5G is started for the first time it will accelerate to 60 Hertz. If you do not want run at 60 Hertz, before starting, press the down arrow key to adjust the speed, then start.

Before first time programing, we strongly recommend resetting function code $\mathbf{F} 134$ to dEF60, see instructions at the bottom of the table.

- Important: If you have $440 \mathrm{~V} \sim 480 \mathrm{~V}$ motor, set $\mathbf{F} \mathbf{0 3 5}$ to your motor's Voltage.
- Warning: If you have RM5G-4075 or higher, be sure to set the fan voltage jumper, see page 9 or 11.
- Motor Full Load Amps (FLA) set F 048 to your motors FLA listed on the motor data plate.

Most users will want to program the following parameters

- Speed Adjustment users that have speed potentiometers will need to program F 002
- Start and Stop users that have auxiliary start and stop buttons will need to program F 001.
- Stop the user should select controlled deceleration or coast (freewheeling), see F 082.
- Acceleration and Deceleration times are programmed by F 019 and F 020.

F 001	Start, Forward \& Reverse	0) Enable FWD and REV terminals to start, keypad start is disabled.	
		1) Enable FWD and REV terminals to start, forward rotation only.	
		2) Keypad Start, Terminals select forward or reverse.	
		3) Keypad Start, forward only. (Factory Default: 3)	
		4) Keypad Start, reverse only	
Notes: Settings: $0,1,2$. If FWD \& COM or REV \& COM are not connected the keypad flashes, "- --- ". If both FWD, REV are connected simultaneous to COM the keypad flashes, "def".			
F 002	Speed Adjustment	0) Analog signal to Vin \& GND (0~10V) or Iin \& GND (4~20mA)	
		1) Keypad Arrow Keys with Hz display. (Factory Default: 1)	
		2) Keypad Arrow Keys with RPM display when arrow keys are pressed.	
		3) Keypad Arrow Keys with user defined meter displayed when arrow keys are pressed. (See F007)	
		4) Digital Speed Input, terminals X1 trough X6, See F 052 through F 057	
F 019	Acceleration Time	0 to 3200 sec. (Factory: $1 / 2$ to $5 \mathrm{Hp} 5 \mathrm{sec}, 7.5$ to $30 \mathrm{Hp} 15 \mathrm{sec}, 40 \mathrm{Hp}$ \& up, 30 sec .)	
F 020	Deceleration Time	0 to 3200 sec. (Factory: $1 / 2$ to $5 \mathrm{Hp} 5 \mathrm{sec}, 7.5$ to $30 \mathrm{Hp} 15 \mathrm{sec}, 40 \mathrm{Hp}$ \& up, 30 sec .)	
F 035	Maximum Output Voltage	RM5G-2***, 0.1V ~ 255V, (Factory Default: 220V)	
		RM5G-4***, 0.1V ~ 510V, (Factory Default: 380V) In North America, this should be set from 440 V to 480 V	
F 048	Motors Full Load Amps Rating	See motor's data plate for the Full Load Amps (FLA).	
F 082	Stop Parameters	0) Controlled Deceleration Stop (Factory Default:	
		1) Coast to Stop (i.e. Freewheeling)	
		2) Coast to Stop + DC Braking, See F 076 and F 075	
F 095	Input Voltage (for RM5G program reference)	RM5G-2***, 190V ~ 240V, Factory Default: 220V	
		RM5G-4***, 340V ~ 480V, Factory Default: 380V In North America, this setting should be set from 440 V to 480 V	
F 134	Commands Default Display: 0	Table for F 134	
		0) Not Active	SAu) Save Program
		CLF) Clear Faults listed in F 091	rES) Restore Previous Settings
		dEF60) Factory 60 Hz settings	rd_EE) Copy Settings to Keypad
		dEF50) Factory 60 Hz settings	Uur_EE) Copy keypad settings to RM5G
		Instructions for F 134. Scroll to the function required then press and hold the FUN/DATA key and wait for the word "end" to appear.	

Section 3.6) Fundamental Motor and Electrical Parameters

Important, the Maximum Output Voltage (F 035) is a high priority setting.

F 035	Maximum Output Voltage	RM5G-2***	(Factory Default: 220V)	Range 0.1V to 255V
		(Factory Default: 380V) In North America, this should be set from 440V to 480V		
F 048	Motor Full Load Amps (FLA)	See the motor data plate for the Full Load Amps (FLA)		

440 V to 480 V motors 75 HP and higher
Set the jumper in the diagram below to the input voltage

Section 4.01 Speed Adjustment (i.e. Speed Reference)

The RM5G has three methods of speed adjustment.

- Keypad speed adjustment, this is the factory default.
- Analog signal to terminals Vin or Iin.
- Digital speed adjustment through the X terminals.

Section 4.02) Digital Speed Adjustment (Input)

The speed can be adjusted digitally to interface with a Programmable Logic Control (PLC).
Digital speed adjustment can also be operated manually, serving multiple manual control stations (simulates a motorized pot with memory or without memory).

Refer to the program settings in yellow highlight

Digital Speed Adjustment Sequence Diagram

Example of digital speed inputs being used to simulate a motorized potentiometer

Section 4.03) Analog Input Signal Scale

The RM5G has two analog inputs Vin and Iin, the signal scales can be changed by the user.

- Vin default scale is $0 \sim 10 \mathrm{~V}$, the input resistance is 20 k Ohms.
- Iin default scale is $4 \sim 20 \mathrm{~mA}$ and input resistance is 250 Ohms (SW1 set to I and J5 set 250) Jumper J5 can be set to 250 Ohms or 500 Ohms, see page 12 for details.

Iin can be changed to Voltage scale by changing SW1 to V, this changes the input resistance to 20 k Ohms and programming F 126 to 1.

Note: See page 12 for the location of the SW1 jumper or switch and Jumper J5.

F 040	Vin Maximum Scale (Vin Gain)	0.00 to 2.00 (Factory Default: 1.00)	Terminal Vin default voltage scale is 0 to 10 V . The maximum value can be set between 5 to 10 V . Example: If F 040 is set 1.25 the result is 0 to 8 V scale. Formula (10/1.25=8)
F 041	Vin Minimum Scale (Vin Bias)	-1 to 1 (Factory Default: 0.00)	The minimum value (bias) of the scale can be increase. The RM5G has two methods of adjusting F 041. First method: Adjusting F 041 while the motor is running, this often achieves best results. Note: If F 040 is other than 1.00 , adjusting F 041 will change the maximum scale (gain). Second method: Mathematical formula, the results are approximate. When F $040=1.00$ the Formula is: $\sin (\text { F041 } * 90)^{*}-5.5$ Example: $\sin \left(-0.20^{*} 90\right)^{*}-5.5=1.699$ Volts, approximately.
F 126	Iin Predefined Scales	0) $4 \sim 20 \mathrm{~mA}$ (Factory Default: 0) 1) $0 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$, Note: F 127 and F 128 requires $\mathrm{F} 126=1$	
F 127	Iin Maximum Scale (Iin Gain)	0.00 to 2.00 (Factory Default: 1.00)	F 127 requires $F 0126=1$ (0 to 20 mA) The maximum value can be set between 10 mA to 20 mA . Example: F $127=2.00$ the result is 0 to 10 mA . Formula (20/2=10) Notes: These instructions apply when DWS1 is set to I. If DSW1 is set V, the instructions for F 040 would apply.
F 128	Iin Minimum Scale (Iin Bias)	$\begin{gathered} -1.00 \text { to } 1.00 \\ \text { (Factory Default: } 0.00 \text {) } \end{gathered}$	F 0128 requires $\mathrm{F} 0126=1$ (0 to 20 mA) The RM5G has two methods of adjusting F 128. First method: Adjusting F 128 while the motor is running, this often achieves best results. Note: If F 127 is other than 1.00 , adjusting F 128 will change the maximum scale (gain). Second method: Calculating by formula, the results are approximate. When DWS1 = I, F126 = 1 and F127 $=1.00(20 \mathrm{~mA})$ The formula is: $\sin (\mathrm{F} 128 * 90) *-11$ Example: $\sin \left(-0.20^{*} 90\right)^{*}-11=3.399 \mathrm{~mA}$ approximately. If DSW1 = V, see F 041 formula

lin

Section 4.04) Analog Inputs Vin and Iin Features

Analog inputs are also know as Speed Reference inputs.

- The RM5G has two analog inputs, Vin and Iin.
- Vin (Voltage input) default scale is $0 \sim 10 \mathrm{~V}$.
- Iin, default scale is $4 \sim 20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=250 \Omega$.

The Iin terminal can be changed to a voltage input by jumper or switch SW1. The I position is for mA signal ($R_{L}=250 \Omega$ or 500Ω, see jumper $J 5$ on page 12), the V position is for voltage signal ($R_{L}=20 \mathrm{k} \Omega$).

- The scale of Vin and Iin can be defined by the user, see F 040, F 041, F 126, F 127 and F 128.
- The Vin and Iin inputs can be program perform other functions such as current limit, voltage limit, bias and gain. see F 124 and F 125.
- Command can be transferred between Vin and Iin while the motor is running. See F 122, F 123 and the sections for F 052 through F 057..

F 002	Speed Adjustment Input	0) Terminals Vin or Iin 1) Keypad Arrow Keys with Hertz display (Factory Default: 1) 2) Keypad Arrow Keys with RPM displayed when keys are pressed. 3) Keypad Arrow Keys with User Defined Units displayed when keys are pressed. 4) Digital Speed Command (Terminals X1 ~ X6, See F052 ~ F057)
$\begin{aligned} & \text { F } 052 \\ & \text { F } 053 \\ & \text { F } 054 \\ & \text { F } 055 \\ & \text { F } 056 \\ & \text { F } 057 \\ & \hline \end{aligned}$	Transferring Command between Vin and Iin	When one of the digital inputs is set to +16 or -16 (terminals X1 to X6). It will transfer command to the secondary speed input selected by F 122. Example: When F 122 is set to 0 , F 123 is set to 3 and F055 is set to 0 . A signal to a digital input X4 transfer s command to the secondary analog speed adjustment. Note: Vin is primary, Iin is secondary.
F 055	Transferring Command to the Secondary Analog Speed Input	When F055 is set to $0, \mathrm{~F} 122$ is set to 0 and F 123 is set to 3 . A signal to a digital input X4 transfer s command to the secondary analog speed reference. Note: Vin is primary, Iin is secondary.
F 122	Selecting the Secondary Speed Input	0) Analog Speed Reference Vin or Iin, See F 123, number 3 (Factory Default: 0)
		1) Keypad Arrow Keys \quad Note: A digital input must be set +16 or -16,
		2) Digital Speed Adjustment See function codes F $052 \sim$ F057
F 123	Secondary Analog Speed Ref., Function	0) Vin + Iin, The sum of Vin and Iin signals. (Factory Default: 0)
		1) Vin-Iin (Vin sets maximum, Iin adjusts with in the range.)
		2) Iin-Vin (Iin sets maximum, Vin adjusts with in the range.)
		3) Vin or lin is selected by digital input, See F055 set: +16 or -16
F 124	Vin Functions	0) Iin maximum scale (Iin Gain)
		1) Voltage Speed Reference ($\mathrm{V}_{\text {ReF }}$) (Factory Default: 1)
		2) Current Limit (When terminal X3 is programed to 0, F 054=0)
		3) Voltage Limit (V/F pattern maximum voltage)
F 125	Iin Functions	0) Vin maximum scale (Vin Gain)
		1) Current Speed Reference ($\mathrm{I}_{\text {REF }}$) (Factory Default: 1)
		2) Current Limit (When terminal X3 is programed to 0) (Current Limit Range $0 \sim 150 \%$)
		3) Voltage Limit (V/F pattern maximum voltage)

Examples of Analog Input Configurations

Section 4.05) Start, Stop, Forward and Reverse

The RM5G's default program is to start and stop from the keypad. Many alternat methods beyond the diagrams shown here are possible. For information about Dynamic Braking (DB) and DC braking see pages 22 and 23.

F 001	Start, Stop, Forward and Reverse	0) Terminals FWD or FEV activate Start forward or Reverse (Keypad isdisabled)
		1) Terminal FWD activates start forward only (Keypad isdisabled)
		2) Keypad Start (i.e. Run), Terminals FWD and REV select direction
		3) Keypad Start (i.e.Run), Forward only (Factory Default: 3)
		4) Keypad Start (i.e.Run), Reverse only
F 003	Keypad Stop	0) Disable Keypad Stop
		1) Enable Keypad Stop (Factory Default: 1)
F 056	Stop, Positive Logic (Digital Input X5)	When terminal X5 (F 056) is set: 0 . Stop is achieved by momentarily closing X5 and COM for not less than 30 ms . This facilitates interfacing with PLC or momentary stop button. Note: When F 056 is set: 0 . Terminals FWD and REV only require 30 ms signal to start. Sustaining the signal to FWD or REV is no longer required.
F 057	Stop, Negative Logic (Digital Input X6)	When terminal X6 (F 057) is set: 0 . Stop is achieved by momentarily opening X6 and COM for not less than 30 milli seconds. This facilitates interfacing with PLC or simulation of a three line sustaining circuit. Note: When F 057 is set: 0 . Terminals FWD and REV only require 30 ms signal to start. Sustaining the signal to FWD or REV is no longer required.
See table to left	Secondary Coast to Stop (i.e External Fault)	When the application requires both controlled deceleration stop button and uncontrolled deceleration stop button. Some electrical codes require Emergency Stop to coast to stop. Program one of the X terminals to ± 7. Afterwards this requires reset either by an X terminal set to ± 6 (X6 is 6 by default) or reseting by pressing the keypad stop button.
F 082	Stop	$0)$ Controlled Deceleration Stop (Factory Default: 1)
		1) Coast to Stop
		2) Coast and DC Braking, See page 21
F 083	Reverse	0) Enable Reverse (Factory Default: 0)
		1) Disable Reverse

Examples of Start, Stop circuits

Section 4.06) Dynamic Braking (i.e. DB)

The RM5G will handle up to 50% of the motor's regenerative amperage without a dynamic braking resistor. If the motor's regenerative amperage exceeds 50%, then dynamic braking is required. The drives rated from $1 / 2$ to 15 HP have an internal Dynamic Braking Transistor (DBT) included as a standard feature. Drives above 15 HP the internal DBT is optional feature. To determine if your drive has a DBT, the model number will end with the letter " B ", Example RM5G-4100B.

F 132	Dynamic Braking End Frequency	0.1 to 60.0 Hz (Factory Default: 0.5)	The Dynamic Braking Transistor (DBT) will stop operating at the frequency setting of F 132. Setting below 0.5 is not recomended.

Section 4.06A) Dynamic Brake Resistor Table (DB resistor) Note: Resistor dimentions are on page 52.

Model \#	Typical Resistance	Recommended Resistor/s	Model \#	Typical Resistance	Recommended Resistor/s
RM5G-200 1/2	100Ω	MHL 100W-100	RM5G-4001	400Ω	MHL $100 \mathrm{~W}-400 \Omega$
RM5G-2001	100Ω	MHL 100W-100	RM5G-4002	200Ω	MHL $100 \mathrm{~W}-400 \Omega$ Two in parallel
RM5G-2002	100Ω	MHL 100W-100	RM5G-4003	133Ω	MHL $100 \mathrm{~W}-400 \Omega$ Three in parallel
$\begin{aligned} & \text { RM5G-2003 } \\ & \text { RM5G-2005 } \\ & \hline \end{aligned}$	40Ω	MHL $500 \mathrm{~W}-40 \Omega$	RM5G-4005	100Ω	MHL $100 \mathrm{~W}-400 \Omega$ Four in parallel
$\begin{aligned} & \hline \text { RM5G-2007 } \\ & \text { RM5G-2010 } \\ & \hline \end{aligned}$	20Ω	MHL 500W-40 Ω Two in parallel	$\begin{aligned} & \text { RM5G-4007 } \\ & \text { RM5G-4010 } \\ & \hline \end{aligned}$	80Ω	MHL 500W-40 Two in series
RM5G-2015	13.3Ω	MHL $500 \mathrm{~W}-40 \Omega$ Three in parallel	RM5G-4015 RM5G-4020	40Ω	MHL 500W-40 Ω Set of two in series Two sets in parallel Total of four pieces
RM5G-2020B	10Ω	MHL 500W-40 Four in parallel	RM5G-4030B RM5G-4040B	20Ω	MHL 500W-40 Set of two in series Four sets in parallel Total of eight pieces
RM5G-2030B	6.6Ω	MHL 500W-40 Six in parallel	RM5G-4050B	13.3Ω	MHL 500W-40 Two in series Six sets in parallel Total of twelve piece
RM5G-2040B	3.3Ω	MHL 500W-40 Tweleve in parallel	RM5G-4060B	10Ω	MHL $500 \mathrm{~W}-40 \Omega$ Set of two in series Eight sets in parallel Total of sixteen piece
RM5G-2050B	2.5Ω	MHL 500W-40 Ω Sixteen in parallel	RM5G-4075B RM5G-4100B	8Ω	MHL $500 \mathrm{~W}-40 \Omega$ Set of two in series Eight sets in parallel Total of twenty piece

Section 4.07) DC Braking

When F 082 is set 2, F 076 time length varies with the frequency attained.
Example 1) If the frequency is set to 60 Hz and the motor reaches 60 Hz , the DC braking time will be 10 times F 076 (F 076 is $0.5 \times 10=5$ seconds.)

Example 2) If the frequency is set to 60 Hz and the motor is stopped at $54 \mathrm{~Hz}(90 \%)$, the DC braking time will be 9 times F 076 (F 076 is $0.5 \times 9=4.5$ seconds.)

Section 4.08) Power Interruption Response

Power interruption is when the power is interrupted for sort time or the voltage is too low, see F079. The drive’s DC link (capacitor bank) is large enough to supply power through very short power interruptions. This allows the motor to continue running (pass-through) short power interruptions. The user can selected the drives response to a power interruption by programming F 078. If you select 3, see the next section about stopping when the power is interrupted.

F 078	Power Interruption Response	0) Disable Pass-through Factory Default: 0	
		1) Enable Pass-through (see F 089)	
		2) Shut Off	
		3) Enable Controlled Deceleration Stop when power is interrupted.	
F 079	Power Interruption Switch Point Voltage	RM5G-2*** 130V to 192V, Factory Default: 175 V	
		RM5G-4*** 230V to 384V, Factory Default: 330V	
F 089	Power Interruption Ride-through Restart Time Limit	0.5 to 5 sec . Factory Default: 0.5	F 089 sets the time limit of a power interruption and pass-through will restart. If the time is exceeded the RM5G will remain off. (Note: F 078 must be set to 1)
F 095	Input Voltage Calibration	RM5G-2*** 190V to 240V Factory Default: 220 V	
		RM5G-4*** 34	V to 480V Factory Default: 380 V

Section 4.09) Power Interruption Controlled Stop Program

If power is interrupted the factory default is to let the motor coast to a stop, F 078 set to 0 . If controlled stop is required, program F078 to 3 . The deceleration curve is defined by function codes F103, F104, F105 and F106.

Factory default power failure stop

Example of user defined power failure stop

F 103	Power Interruption Frequency Reduction	0 to 20 Hz Factory Default: 3	When the power is interrupted the frequency will immediately be reduced by F 103 setting. Note: F 103 setting is too large, this could cause hard braking and possibly trip off the RM5G, resulting in the motor coasting.
F 104	1st Decel Time from F 103 to F 106	0 to 3200 sec Factory Default: 15	If F 106 is set 0 Hz and F 104 is set 15 sec., the motor will decel to a stop in 15 sec. If F 106 is set 30 Hz the motor will decel to 30 Hz in 15 sec.
F 105	2nd Decel Time from F 106 to stop	$\begin{gathered} 0 \text { to } 3200 \text { sec } \\ \text { Factory Default: } 15 \end{gathered}$	If F 106 is set 0 Hz F 105 is inactive. If F 106 is set 30 Hz and F 105 is set 15 sec., the motor will decel from 30 Hz to stop in 15 sec.
F 106	Switch Point Frequency from first to second deceleration time	0 to 400 Hz Factory Default: 0	F 106 frequency setting is the point when the 1st decel time switches to the 2nd decel time. If F 106 is set 0 Hz , the 2nd decel time is disabled.

Section 4.10) Frequency Scale of Acceleration \& Deceleration (F 018)

The frequency scale of the acceleration and deceleration times are determined by F 018. Example: If F 018 frequency is set to 60 Hz ., and F 019 is set to 15 seconds. The motor will reach 60 Hz in 15 sec . If F 018 is changed to 30 Hz . The motor will reach 30 Hz in 15 seconds and 60 Hz in 30 seconds.

Section 4.11) Acceleration \& Deceleration Times (F 019 and F 020)

The acceleration and deceleration time of the primary speed, speed levels 4, 5, 6, 7 and Jog are programmed by F 019 and F 020. Speed Levels 1,2 and 3 acceleration and deceleration times are programmed independently by F 021 through F 026, see page 29.

Section 4.12) Secondary Acceleration \& Deceleration Times (F 027 \& F028)

The secondary acceleration and deceleration times will override all other settings when input X4 is activated. Secondary acceleration \& deceleration time are programmed by F 027 and F 028. Note: F 055 must be set to 2 for X 4 to activate secondary acceleration \& deceleration.

Acceleration \& Deceleration Function Codes

F 018	Frequency Scale of Acceleration \& Deceleration	0.1 to 400 Hz Factory Default: 60	Example: If acceleration is set 15 seconds and the frequency scale (F 018) is set 60 . The motor will accelerate to 60 Hz in 15 seconds. If F 018 is 30 , the motor will accelerate to 30 Hz in 15 seconds and 60 Hz in 30 seconds.
F 019	Primary Acceleration Time Also Speed Levels 4, 5, 6, 7 \& Jog	0.1 to 3200 Sec.	Factory Defaults: ($1 / 2$ to $5 \mathrm{HP}: 5$ sec.) (7.5 to $30 \mathrm{HP}: 15$ sec.) ($40 \mathrm{Hp} \& \mathrm{up}: 30$ sec.)
F 020	Primary Deceleration Time Also Speed Levels 4, 5, 6, 7 \& Jog	0.1 to 3200 Sec.	Factory Defaults: ($1 / 2$ to 5 HP: 5 sec.) (7.5 to $30 \mathrm{HP}: 15 \mathrm{sec}$.) ($40 \mathrm{Hp} \& \mathrm{up}: 30 \mathrm{sec}$.)
F 027	Secondary Acceleration Time	0.1 to 3200 Sec. Factory Default: 15 sec	Secondary acceleration time is activated by input X4, Function code F 054 must be set to 2
F 028	Secondary Deceleration Time	0.1 to 3200 Sec. Factory Default: 15 sec	Secondary deceleration time is activated by input X4, Function code F 054 must be set to 2
F 054	X4 Input Terminal	$0 \text { to } \pm 16$ Factory Default: 2	The factory default setting of 2 enables secondary acceleration and deceleration

Section 4.13) S-curve Starting, Leveling and Stopping

The S-curve time is in addition to the acceleration and deceleration times.
Example: If the S-curve time is programmed to 4 seconds and the acceleration time is 5 seconds, the total acceleration time is 9 seconds. If the deceleration time is 2.5 seconds, the total deceleration time is 6.5 seconds, see diagram below.

F 029	S-Curve Acceleration \& Deceleration	0.0 to 5.0 seconds	Factory Default: 0.0

Section 4.14 Digital Inputs X1 through X6 programing

Digital inputs receive signals to engage the RM5G program features. The RM5G's digital inputs by factory default are positive logic and sink (NPN).

Digital Input Terminals X1 through X6			Table for terminals X1 through X6 See section 4.11 about positive and negative logic	
			0) X1: Enable Digital Speed Adjustment	$\pm 6)$ Reset
			0) X2: DC braking	± 7) Coast to Stop (thr is displayed)
			0) X3: Current Limit	$\pm 8)$ Disable Outputs (bb is displayed)
Function Codes	InputTerminals	Factory Defaults	0) X4: Select Analog Speed Input Vin or Iin	± 9) Freewheel (Fr is displayed) See Warning !!!
			0) X5: Stop, Positive Logic	$\pm 10)$ Speed search from Max., Hz.
F 052	X1	3	0) X6: Stop, Negative Logic	$\pm 11)$ Speed search from set Hz .
F 053	X2	4	$\pm 1) \mathrm{Jog}$	$\pm 12)$ Hold Speed
F 054	X3	1	$\pm 2)$ Secondary Accel \& Decel	$\pm 13)$ Digital Speed Adjustment, Accel.
F 055	X4	2	± 3) Preset Speed Level Input 1, Typically X1	$\pm 14)$ Digital Speed Adjustment, Decel.
F 056	X5	7	± 4) Preset Speed Level Input 2, Typically X2	$\pm 15)$ Clear Digital Speed Adjustment
F 057	X6	6	± 5) Preset Speed Level Input 3, Typically X3	$\pm 16)$ Select Vin or Iin.

Section 4.15 Positive Logic and Negative Logic

Positive logic the circuit is Normally Open (N.O.) When the circuit is closed the program is engaged. Negative logic the circuit is Normally Closed (N.C.) When the circuit is opened the program is engaged.

Section 4.16 Sink or Source
The X terminals have a Sink (NPN) or Source (PNP) switch or jumper, the factory default is Sink. When set to Source, the auxiliary power must be $24 \mathrm{~V}_{\mathrm{DC}}$, see diagrams below.

Section 4.17 Digital Inputs X1 through X6 reference

0) X1: Enable Digital Speed Adjustment

This function is exclusive to terminal X1 and is positive logic only, see section 4.02 on page 18.

0) X2: DC braking

This function is exclusive to terminal X 2 and is positive logic only, see section 4.07 on page 23.

0) X3: Current Limit

This function is exclusive to terminal X3 and is positive logic only, see page 20, diagram on the bottom left of the page.

0) X4: Select Vin or Iin

This function is exclusive to terminal X4 and is positive logic only, see section 4.04 on page 20.

0) X5: Stop, Positive Logic

This function is exclusive to terminal X5, see page 21, diagram Start \& Stop with momentary buttons and the diagram Forward and Reverse using pulse signals.

0) X6: Stop, Negative Logic

This function is exclusive to terminal X6, see page 21, diagram of Simulated Three Line Sustaining Circuit.

$\pm 1)$ Jog

X3 is factory default is Jog (+1), when engaged the motor will go the frequency setting of F 017 with the acceleration of F 019 and deceleration of F 020. Jog is a momentary function.

$\pm 2)$ Secondary Acceleration \& Deceleration

X 4 is factory default set to +2 , for details see section 4.12 , page 25 .
± 3) Preset Speed Level Input 1
X1 is factory default set to +3 , for details see section 4.18 , page 29.

± 4) Preset Speed Level Input 2

X2 is factory default set to +4 , for details see section section 4.18 , page 29 .

± 5) Preset Speed Input 3

This setting is typically applied to X3 (F 054), This enables pre-set speed levels 4 through 7. See section_section 4.18, page 29.

$\pm 6)$ Reset

$\pm 7)$ Coast to stop and keypad displays "thr".

Notes: Keypad operation (F001=3, F002=1) the stop button must be pressed before restarting.
Notes: Vin or Iin operation, FWD or REV must be cleared and system reset, when factory default
X6 is reset.

± 8) Disable Outputs Y1, Y2 and Relays T1 and T2, keypad displays "bb"

See page 30, section 4.19

Section 4.17 continued Digital Inputs X1 through X6 reference
± 9) Motor Freewheels and keypad displays "Fr"
Warning !!! When ± 9 is disengaged the motor will immediately restart from zero Hertz. Great care and consideration should be given when applying this program.
$\pm 10)$ Speed search from maximum frequency
$\pm 11)$ Speed search from set frequency
$\pm 12)$ Hold Speed
When engaged the speed will immediately put on hold at the frequency (Hz) of the moment.

$\pm 13)$ Digital Speed Adjustment Accelerate

Increases the frequency, see section 4.02 on page 18.

± 14) Digital Speed Adjustment Decelerate

Decreases the frequency, see section 4.02 on page 18.

$\pm 15)$ Clear Digital Speed Adjustment

Clears the speed from memory, resetting it to zero, see section 4.02 on page 18.

± 16) Select Vin or Iin

Transfers command between Vin and Iin, see section 4.04 on page 20.

Section 4.18 Pre-set Speed Levels

In addition to the adjustable primary speed, the RM5G has seven pre-set speed levels.
The factory default program has speed levels 1, 2, 3 and Jog enabled. To enable speed levels 4 through 7, program terminal X3 (F 054 set to 5). The speed levels are activated in binary order.

Note: Speed Levels 4 through 7, On* and Off* indicated F 054 is set 5 Note: Secondary Acceleration \& Deceleration will override when engaged				Terminals		
				X3*	X2	X1
F 009	Primary Speed Level (Adjustable Speed)	0 to 400 Hz	Factory Default: 60 Hz	Off	Off	Off
F 010	Pre-set Speed Level 1	0 to 400 Hz	Factory Default: 10 Hz	Off	Off	On
F 011	Pre-set Speed Level 2	0 to 400 Hz	Factory Default: 20 Hz	Off	On	Off
F 012	Pre-set Speed Level 3	0 to 400 Hz	Factory Default: 30 Hz	Off	On	On
F 013	Pre-set Speed Level 4	0 to 400 Hz	Factory Default: 0 Hz	On*	Off*	Off*
F 014	Pre-set Speed Level 5	0 to 400 Hz	Factory Default: 0 Hz	On*	Off*	On*
F 015	Pre-set Speed Level 6	0 to 400 Hz	Factory Default: 0 Hz	On*	On*	Off*
F 016	Pre-set Speed Level 7	0 to 400 Hz	Factory Default: 0 Hz	On*	On*	On*
F 017	Jog	0 to 400 Hz	Factory Default: 6 Hz	For Jog X3, On and F 053 set to 1		
F 021	Pre-set Speed Level 1 Acceleration Time	0 to 3200 sec	Factory Default Varies with HP	Speed levels 4 through 7 have the acceleration and deceleration times of F 019 and F 020.		
F 022	Pre-set Speed Level 1 Deceleration Time	0 to 3200 sec	Factory Default Varies with HP			
F 023	Pre-set Speed Level 2 Acceleration Time	0 to 3200 sec	Factory Default Varies with HP			
F 024	Pre-set Speed Level 2 Deceleration Time	0 to 3200 sec	Factory Default Varies with HP			
F 025	Pre-set Speed Level 3 Acceleration Time	0 to 3200 sec	Factory Default Varies with HP			
F 026	Pre-set Speed Level 3 Deceleration Time	0 to 3200 sec	Factory Default Varies with HP			
F 054	X3 Input Terminal	0 to ± 16	Factory Default: 1		$\begin{aligned} & \hline \text { to } 5 \\ & \text { els } 4 \\ & \hline \end{aligned}$	

Section 4.19) Digital Outputs

The RM5G has two relays and two transistor outputs. Relay 1 is a Single Pole Double Throw (SPDT) relay. Relay 2 is a Single Pole Single Throw (SPST) relay. They are both rated up to $250 \mathrm{~V}_{\mathrm{AC}} / 0.5 \mathrm{~A}$. Terminals Y1 and Y2 are open collector, opto-isolated transistor outputs and are rated $48 \mathrm{~V}_{\mathrm{DC}} / 50 \mathrm{~mA}$. Note: If an X terminal is programmed ± 8, when engaged all the digital output are disabled and the keypad displays "bb".

F 058	Y1 Terminal	Factory	Table for Y1, Y2, Relay 1 and Relay 2	
F 058	Open Collector Transistor	Default: 3	$\pm 1)$ Motor Rotation	$\pm 8)$ Dynamic Braking
F 059	Y2 Terminal Open Collector Transistor	Factory Default: 2	± 2) Level Speed (See F061 and F062) ± 3) Zero Speed	$\pm 9)$ Low Voltage Pass-through ± 10) General Fault Pass-through Detected
F 060	Relay 1 Terminals: Ta1, Tb1, Tc1	Factory Default: 11	± 4) Freq., Output Detected (see F 063) ± 5) Overload (OLO) (see F $065=1$)	$\pm 11)$ General Fault Detected
F 131	Relay 2 Terminals: Ta2, Tc2	Factory Default: 1	± 6) Stall Prevention Detected ± 7) Low Input Voltage (LE)	

Section 4.20) Analog Outputs (i.e. Analog Meters)

The RM5G has two analog outputs, their maximum output power is $10 \mathrm{~V}, 1 \mathrm{~mA}$.
The meter's recommend input resistance is 10,000 ohms ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$).

| F 044 | FM +
 Analog Output | Factory Default: 1 | 0) Frequency (Hertz) | Table for AM + and FM + |
| :--- | :---: | :---: | :--- | :--- | :--- |
| F Vin input signal | 6) Voltage Output | | | |
| F 129 | AM +
 Analog Output | Factory Default: 2 | 1) Keypad speed setting
 4) Iin input signal | |
| | | 2) Amperage output | 5) DC Voltage (PN) | |

F 045	FM + Scale (Gain)	00.0 to 2.00 Factory Default: 1.00	The factory default scale is $0 \sim 10 \mathrm{~V}$, The function code entry is a multiplier of 10 Volts Example, to change the scale to $0 \sim 8 \mathrm{~V}$, enter 0.80 F 130
AM + Scale (Gain)	00.0 to 2.00 Factory Default: 1.00	$(0.80 \times 10=8.0 \mathrm{~V})$	

Section 4.21) Keypad Default Display

The keypad LED display can be programmed to display one of the eight parameters listed below.

F 006	Keypad	1) Hertz Output	4) DC Voltage (PN)	7) User Defined Meter
	Default Display	2) Speed Adjust, Hz	5) Amperage	8) Terminal Status
	3) Voltage	6) RPM	Factory Default: 1	

Section 4.22) User Defined Meter (i.e. MPM)

The user defined meter is often referred to as MPM (Meters Per Minute). The keypad default display or the optional DM-501 meters can be programed to display MPM.

Example: You have a conveyer that runs at 250 feet per minute when the motor is at full speed, 60 Hz . You want the meter to display feet per minute (FPM). Divide 250 FPM by 60 Hz $(250 / 60=4.1666)$, enter 04.17 in to F007. If you are using Vin the keypad will display MPM (FPM) while you are adjusting speed. If you are using the keypad, when you press the arrow keys the keypad display will change to Hz., several seconds after you stop pressing the arrow keys the keypad display will change back to MPM.

F 007	User Defined Meter Calibration	0.00 to 500.00 Units per Hz. Factory Default: 20	Example: 20 units per Hz is 1200 at 60 Hz.	
F 008	Keypad's Custom Speed Decimal Point	0 to 4 Factory Default: 0	0) No Decimal Points	2) Two Decimal Points
	1) One Decimal Point	3) Three Decimal Points		
F 051	Number of Motor Poles	2 to 10 Poles Factory Default: 4P	Required for calibrating RPM and User Defined Meter	

Section 4.23) DM-501 Digital Meters (Optional Item)

Digital meters and CN1 plug are available from Electric Regulator.

F 099	Digital Meter 1	Factory Default: 1	0) None, No Display	3) Voltage Output	6) RPM
F 100	Digital Meter 2	Factory Default: 2	1) Hertz Output	4) DC Voltage (PN)	7) User Defined Meter
F 101	Digital Meter 3	Factory Default: 3	2) Speed Adjust, Hz	5) Amperage Output	8) Terminal Status

Section 4.24) DM-501 Digital Meter Connection Diagram

The CN1 plug is the output for all three DM-501 digital meters.

Section 4.25) Voltage Frequency Patterns (V/F Patterns)

The RM5G has a selection of five V/F patterns or the user can create a three segment V/F pattern.

F 102	V/F Pattern Selection	0) Linear (Factory Default: 0) Note: Segmented V/F Patterns require F 102 set: 0 1) Economy, asjusts the voltage to the minimum required to maintain speed 2) Squared Curve 3) 1.7 th Power Curve 4) 1.5 th Power Curve	
F 031	Maximum Frequency	$\begin{array}{\|c\|} \hline 0.01 \text { to } 400 \mathrm{~Hz} \\ \text { Factory Default: } 60 \mathrm{~Hz} \\ \hline \end{array}$	To program F 031 above 120 Hz ., see F 092
F 034	Maximum Frequency of Primary V/F Pattern	$\begin{gathered} 0.01 \text { to } 400 \mathrm{~Hz} \\ \text { Factory Default: } 60 \mathrm{~Hz} \end{gathered}$	F 034 sets the maximum frequency were the maximum voltage is reached (i.e. The Primary V/F Pattern) See the diagram of the Factory Default V/F Pattern below
F 035	Maximum Voltage of Primary V/F Pattern	RM5G-2XXX series	0.1 to 255 Volts, Factory Default: 220 Volts
		RM5G-4XXX series	0.1 to 510 Volts, Factory Default: 380 Volts Note: In North America this is normaly set $440 \mathrm{~V} \sim 480 \mathrm{~V}$
F 036	1st Segment Frequency of V/F Pattern	0.01 to 400 Hz Factory Default: 0 Hz	The V/F pattern can be customized into two or three segments, 1st, 2nd and Primary V/F pattern. See diagrams above F036 and F037 set the frequency and voltage of the 1st segment. Note: To disable the 1st Segment set F036 and F037 to zero. Note: F 102 must be set 1
F 037	1st Segment Voltage V/F Pattern	RM5G-2XXX series	0.1 to 255 Volts, Factory Default: 0 Volts
		RM5G-4XXX series	0.1 to 510 Volts, Factory Default: 0 Volts
F 038	2nd V/F Pattern Frequency Scale	0.01 to 400 Hz Factory Default: 0 Hz	F038 and F039 set the frequency and voltage of the 2nd segment Note: To disable the 2nd Segment set F038 and F039 to zero. Note: F 102 must be set 1
F 03	2nd V/F Pattern Maximum Voltage	RM5G-2XXX series	0.1 to 255 Volts, Factory Default: 0 Volts
		RM5G-4XXX series	0.1 to 510 Volts, Factory Default: 0 Volts

Factory Default VIF Pattern

Example of three segment V/F Pattern

Function Codes F 031 and F 034

Page 32

Section 4.26) Frequency Adjustment Range

The factory default frequency adjustment range is 0 to 60 Hz ., the maximum speed can be programmed up to 400 Hz . To program F 031 above 120 Hz , see function code F 092 or see section 4.36 on page 37 .

F 031	Maximum Output Frequency	0.1 to 400 Hz Factory Default: 60	To program F 031 above 120 Hz , see F 092
F 042	Maximum Frequency Adjustment Range	0.00 to 1.00 Factory Default: 1.00	F 042 is a multiplier of F 031. Example: If F 042 is 0.90 then maximum is $54 \mathrm{~Hz},(0.90 \times 60=54)$
F 043	Minimum Frequency Adjustment Range	0.00 to 1.00 Factory Default: 1.00	F 043 is a multiplier of F 031. Example: If 043 is 0.25 then maximum is $15 \mathrm{~Hz},(0.25 \times 60=15)$

The diagram shows how to program a frequency adjustment range from 24 to 45 Hz .

Section 4.27) Frequency Bypass

Frequency bypass prevents the motor's speed from dwelling with in the bypass bandwidth. Frequency bypass is often used to avoid machinery resonance frequency. The RM5G has up to three frequency bypasses.
Note: Many motors resonance frequency is between 6 Hz to 9 Hz .

F 084	Frequency Bypass 1	0 to 400 Hz	Factory Default: 0
F 085	Frequency Bypass 2	0 to 400 Hz	Factory Default: 0
F 086	Frequency Bypass 3	0 to 400 Hz	Factory Default: 0
F 087	Frequency Bypass Bandwidth	0 to 25.5 Hz Factory Default: 0	F 087 bandwidth applies to all three, F 084, F 085 and F 086

Section 4.28) Motor Ratings and Overload Parameters

Read the motor's data plate and the RM5G data label before programming this section.

Slow overload can not be changed by the user. Slow overload (OL curve) overrides all other curves. Example: If at any speed the motor current exceeds 150% for more than one minute the motor is switched off. Second example: If the motor is running at 20 Hz and the motor current exceeds 95% for more than 15 minutes, the motor is switched off.

Fast overload is normally disabled, function code F 067 must be set to 1 to enable fast overload. Fast overload will switch off the motor when the current exceeds the setting of F 068 by more than the time setting of F 069 . The factory default settings are, if at any speed, if the motor current exceeds 160% for more than 0.1 second, the motor is switched off. Important note: F 068 is the RM5G's output Amperage, not the motors Amperage. Fast overload is intended to protect the RM5G drive, not the motor.

Section 4.29) Motor Slip and Stall Parameters

F 050	Motor Slip Compensation	-9.9 to 5 Hz Factory Default: 0.0	F050= Motor Slip Compe F049= Motor No load Cu F048 $=$ Motor Max. Rated LC $=$ Load Current durin	Cution Current nomal operation$\quad F 050=\frac{L C-F 049}{F 048-F 049}$
F 064	Automatic Torque Boost	0.0 to 25.5	Factory Default: 1.0	Automatic Voltage boost during heavy loads
F 070	Stall Prevention During Acceleration	30% to 200% Factory Default: 170%	F 070 is a percentage of the motors Full Load Amps (FLA). If F 070 is exceeded the speed is reduced or leveled.	
F 071	Stall Prevention During Level Speed	$30 \% \text { to } 200 \%$ Factory Default: 160\%	F 071 is a percentage of the motors Full Load Amps (FLA). If F 071 is exceeded the speed is reduced.	
F 072	Stall Recovery Acceleration Time	$\begin{gathered} 0.1 \text { to } 3200 \mathrm{sec} \\ \text { Factory Default: } 15 \mathrm{sec} \\ \hline \end{gathered}$	Acceleration time after recovering from stall at level speed.	
F 073	Stall Prevention Deceleration Time	$\begin{gathered} \hline 0.1 \text { to } 3200 \mathrm{sec} \\ \text { Factory Default: } 15 \mathrm{sec} \\ \hline \end{gathered}$	Deceleration time when preventing stall while at level speed	
F 074	Deceleration Stall Prevention	0) Disable stall prevention during decel. If dynamic braking is used F 074 can be disabled. 1) Enable stall prevention during deceleration. Factory Default: 1		

Section 4.30) Level Speed Detection Signal Bandwidth (for outputs Y1, Y2, T1 and T2)

 If terminals Y1, Y2 or relays T1, T2 are programed to signal when the speed is level. The corresponding function codes are F058, F059, F060 or F 131 would be programmed to ± 2, see section 4.19 on page 30 . Function codes F061 or F062 determine the level speed bandwidth.| F 061 | Vin or Iin
 Level Speed
 Signal Bandwidth | 0.0 to 10 Hz.
 Factory Default: 2 Hz. | When Vin or Iin controls motor speed.
 F 061 is the Hz bandwidth of the level speed signal. |
| :---: | :---: | :---: | :--- |
| F 062 | Keypad Arrow Keys
 Level Speed
 Signal Bandwidth | 0.0 to 10 Hz.
 Factory Default: 2 Hz. | When the Keypad controls motor speed.
 F 062 is the Hz bandwidth of the level speed signal. |

Section 4.31) Motor Starting Parameters

If the motor has difficulty starting, the following recommendations often solve the problem.

- First, pre-start motor magnetizing time, F077, 1.0 second is often sufficient.
- Second, decrease the switching frequency, F 081.
- Third decrease the acceleration time, F 019 for details see page 20.
- Fourth creeping start function codes F096 and F097.
- Last increase the starting frequency F032, finally increase the stating voltage F033.

F 032	Starting Frequency	0.1 to 10 Hz Factory Default: 0.5 Hz	
F 033	Starting Boost Voltage	220 V Motor 0 to 50 Volts Factory set: 6 volts	
	F 077	Pre-Start Motor Magnetizing Time	0 to 20 seconds Factory Default: 0
F 096	Creepore starting, DC voltage is applied to the stator to magnetize the rotor. This will delay start by the amount This function is similar to the starting capacitor on a		
F 097	Creeping Start Time	0.0 to 400 Hz Factory Default: 0.0	Creeping before accelerating helps avoid excessive slip during acceleration. Typically the Creeping frequency is set 1 Hz above F 032 the start frequency.

Section 4.32 Switching Frequency (i.e. Carrier Frequency) also see section 2.5 on page 11. The switching frequency synthesizes a sinusoidal wave by using Pulse Width Modulation (PWM) and the motor's inductance. The motor will be quieter and smoother with higher switching frequencies. If the motor has difficulty starting, lowering the switching frequency sometimes solves this problem. If the length of the wires from the drive to the motor are long, the switching frequency should be lowered, also a line reactor may be recommend. Refer to the wires size table on page 11.

F 081	Switching Frequency	Factory Default: 1	$0) 800 \mathrm{~Hz}$	$3) 7.5 \mathrm{kHz}$	$6) 15.0 \mathrm{kHz}$
			$1) 2.5 \mathrm{kHz}$	$4) 10.0 \mathrm{kHz}$	
		$2) 5.0 \mathrm{kHz}$	$5) 12.5 \mathrm{kHz}$		

Section 4.33) Holding the Motor Stationary

When the motor is stopped, applying DC to the motor it will hold the motor stationary and will resist a small amount torque, F052 is not enabled when start engaged.
Warning: If DC is applied too long the motor will overheat and could cause damage.

F 052	Input X2 programmed to hold the motor when stopped	When F 052 is programmed to zero and terminal X2 engage (circuit closed) DC is applied to the motor, the DC Amperage is set by F 075.	
F 075	DC Amperage Applied to Motor	0 to 150% Factory Default: 50%	F 075 is a percentage of the output amperage listed on the RM5G data label. Also see page 23, Sec 4.17B

Section 4.34) Store and Copy Programs

The keypad can store and copy a program to another RM5G drive.
Below are instructions of how transfer a program from one RM5G to another RM5G.

- First, enter F134 and scroll to "rd_EE" and press and hold the enter key until the word "end" appears.
- Second, disconnect the keypad and connected it to the next RM5G, go to F134 and scroll to "UUr_EE", then press and hold the enter key until the word "end" appears.

F134	Copy	0) Not Active	SAu) Store User Settings
		rES) Restore Previous settings	
	Commands	dEF60) Restore factory 60 Hz settings	rd_EE) Copy RM5G settings to Keypad
		dEF50) Restore factory 50 Hz settings	UUr_EE) Copy Keypad settings to RM5G

Section 4.35) Restoring the factory settings

Go to F134, scroll to "dEF60" then press and hold the FUN/DATA key until the word "end" appears. All the factory default 60 Hz settings have been restored. If you have a $440 \mathrm{~V} \sim 480 \mathrm{~V}$ power, go to F 034 and F 095 set the voltage according to your motor and input voltage.

F134	Copy	() Not Active	SAu) Store User Settings
		CLF) Clears fault history stored in F 091	rES) Restore Previous settings
		rd_EE) Copy RM5G settings to Keypad	
	dEF50) Restore factory 50 Hz settings	UUr_EE) Copy Keypad settings to RM5G	

Section 4.36) Locking Programs \& $\mathbf{4 0 0} \mathbf{~ H z ~ M o t o r s ~}$

Function code F 092 performs two functions.

- Locking the function codes to prevent unauthorized programing.
- Enabling operation up to 400 Hz , the factory default program limits operation to 120 Hz .

F 092	Lock Function Codes	0) Unlock Program, Maximum frequency is limited to 120 Hz . Factory Default: 0
	$\&$	1) Lock Program, Maximum frequency is limited to 120 Hz.
	120 Hz or 400 Hz	
	2) Unlock Program, Maximum frequency is 400 Hz.	
	3) Lock Program, Maximum frequency is 400 Hz.	

Section 4.37) Fault History

Function code F 091 stores in memory the last five faults that occurred. Enter F 091 and then scroll to see the faults. If you what to clear the fault history, go to F 134 and scroll to CLF then press and hold the enter key until the word "end" appears.

F 091	Fault History	Displays the last five faults

Section 4.38) Limit of General Fault Pass-throughs

F 080	Limit of General Fault Pass-throughs	0 to 16 (Factory Default: 0)	If a fault is detected and then quickly corrects without intervention. The RM5G will continue to run (pass-through). F 080 limits the number of permissible pass-throughs

Blank Page

Blank Page

Blank Page

Section 5.1) KP-202C Factory Settings

Adjusting the potentiometers (pots) on the KP-202C analog keypad are best made with a \#00 Philips head screwdriver. The diagram below shows the KP-202C layout and factory default settings. The KP-202C adjustment pots one through 6 (i.e. ADJ1 to ADJ6) and dip switch functions are shown in the diagram below. The RSW rotary switch selects the LED display mode. The functions of the pots and dip switches can be programmed, please see sections 5.3 and 5.4

Section 5.2) RSW selects the LED display

The RSW rotary switch selects the LED display.
See the table below for descriptions of each position of the RSW.
Note: ADJ4, ADJ5, ADJ6 can be programmed, all the others are dedicated.

RSW Position	Function Displayed	Factory Default Setting	Function Code
0	Frequency Output (Hz)	Dedicated Display	---
1	ADJ 1	Start Boost Voltage, 0 to 127 Volts	Dedicated
2	ADJ 2	Acceleration Time, 0.0 to 165 seconds	Dedicated
3	ADJ 3	Deceleration Time, 0.0 to 165 seconds	Dedicated
4	ADJ 4	Speed Level 1 Freq., 0.0 to 120 Hz (Factory Default: F $110=1$)	F 110
5	ADJ 5	Max., Output Freq., 0.0 to $120 \mathrm{~Hz} \mathrm{(Factory} \mathrm{Default:} \mathrm{~F} \mathrm{111} \mathrm{=} \mathrm{20)}$	F 111
6	ADJ 6	Secondary Acc \& Dec, 0.0 to 165 sec. (Factory Default: F 112 = 17)	F 112
7	Knob	Speed Adjustment (Factory Default: F 117 = 0)	F 117
8	Carrier Frequency	1=2.5kHz, 2=5kHz, 3=7.5kHz, 4=10kHz, 5=12.5kHz, 6=15kHz	F081
9	Voltage Output	Dedicated Display	Dedicated
A	DC Voltage (PN)	Dedicated Display	Dedicated
B	Amperage Output	Dedicated Display	Dedicated
C	Motor RPM	Dedicated Display	Dedicated
D	MPM	Dedicated Display	Dedicated
E	Terminal Status	Dedicated Display	Dedicated
F	DIP Status	Dedicated Display	Dedicated

Section 5.3) Programming the Adjustment Pots (ADJ and Knob)

Programming the parameters of ADJ4, ADJ5, ADJ6 and the knob requires disconnecting the KP-202C and connecting KP-201.
Note: ADJ1, ADJ2 and ADJ3 are dedicated (not programmable).

Example, to change ADJ 4 to Jog, go to F110 and program it to 8.

Setting	Function Description	Range of Adjustment	Details see page
0	Primary Adjustable Speed	$0 \sim 120 \mathrm{~Hz}$	Pg 27
1	Preset Speed Level 1	$0 \sim 120 \mathrm{~Hz}$	Pg 27
2	Preset Speed Level 2	$0 \sim 120 \mathrm{~Hz}$	Pg 27
3	Preset Speed Level 3	$0 \sim 120 \mathrm{~Hz}$	Pg 27
4	Preset Speed Level 4	$0 \sim 120 \mathrm{~Hz}$	Pg 27
5	Preset Speed Level 5	$0 \sim 120 \mathrm{~Hz}$	Pg 27
6	Preset Speed Level 6	$0 \sim 120 \mathrm{~Hz}$	Pg 27
7	Preset Speed Level 7	$0 \sim 120 \mathrm{~Hz}$	Pg 27
8	Jog	$0 \sim 120 \mathrm{~Hz}$	Pg 27
9	Primary Acceleration Time	$0.0 \sim 165 \mathrm{sec}$	Pg 23
10	Primary Deceleration Time	$0.0 \sim 165 \mathrm{sec}$	Pg 23
11	Preset Spd Level 1 Acc Time	$0.0 \sim 165 \mathrm{sec}$	Pg 27
12	Preset Spd Level 1 Dec Time	$0.0 \sim 165 \mathrm{sec}$	Pg 27
13	Preset Spd Level 2 Acc Time	$0.0 \sim 165 \mathrm{sec}$	Pg 27
14	Preset Spd Level 2 Dec Time	$0.0 \sim 165 \mathrm{sec}$	Pg 27
15	Preset Spd Level 3 Acc Time	$0.0 \sim 165 \mathrm{sec}$	Pg 27
16	Preset Spd Level 3 Dec Time	$0.0 \sim 165 \mathrm{sec}$	Pg 27
17	Secondary Acc \& Dec Time	$0.0 \sim 165 \mathrm{sec}$	Pg 23
18	Starting Frequency	$0.1 \sim 10.0 \mathrm{~Hz}$	Pg 34
19	Starting Voltage	$0 \sim 127 \mathrm{~V}$	$\operatorname{Pg} 34$
20	Max., Output Frequency	$0 \sim 120 \mathrm{~Hz}$	Pg 30
21	Maximum Output Voltage	255 V or 510 V	Pg 30
22	V/F Segment 1, Frequency	0.0 ~ F034	$\operatorname{Pg} 30$
23	V/F Segment 1, Voltage	$0.0 \sim$ F035	Pg 30
24	V/F Segment 2, Frequency	0.0 ~ F034	Pg 30
25	V/F Segment 2, Voltage	$0.0 \sim$ F035	Pg 30

Setting	Function Description	Range of Adjustment	Details see page
26	Vin Gain	$0.00 \sim 2.00$	Pg 17
27	Vin Bias	$-1.00 \sim 1.00$	Pg 17
28	Max., Output Frequency	$0.00 \sim 1.00$	Pg 31
29	Min., Output Frequency	$0.00 \sim 1.00$	Pg 31
30	FM+ Gain	$0.00 \sim 2.00$	Pg 28
31	Motor Slip Compensation	-9.99 ~ 10.00	Pg 33
32	Frequency Detection Level	0.0 ~ F063	Pg 28
33	Automatic Torque Boost	$0.0 \sim 25.5$	Pg 33
34	System Overload Detection	$30 \sim 200 \%$	Pg 32
35	Stall Prevention, Accel	$30 \sim 200 \%$	Pg 33
36	Stall Prevention, Level Spd	$1 \sim 150$	Pg 33
37	After Stall Prevent Accel Time	$0.0 \sim 165 \mathrm{sec}$	Pg 33
38	Stall Prevent Decel Time	$0.0 \sim 165 \mathrm{sec}$	Pg 33
39	DC Braking Level	$1 \sim 150$	Pg 21
40	Frequency Bypass 1	$0.0 \sim$ F084	Pg 31
41	Frequency Bypass 2	$0.0 \sim$ F085	Pg 31
42	Frequency Bypass 3	$0.0 \sim$ F086	Pg 31
43	Bypass Frequency Bandwidth	$0.0 \sim 25.5 \mathrm{~Hz}$	Pg 31
44	Creeping Start Frequency	0.0 ~ F096	Pg 34
45	Creeping Start Time	$0.0 \sim 25.5 \mathrm{sec}$	Pg 34
46	MPM (User Defined Meter)	$0.01 \sim 100.00$	Pg 29
47	Iin Gain	$0.00 \sim 2.00$	Pg 17
48	Iin Bias	$-1.00 \sim 1.00$	Pg 17
49	AM+ Gain	$0.00 \sim 2.00$	Pg 28

Section 5.4 DIP Switch Programing

The DIP switches enable or disable functions, all the DIP switches are programmable. Programming the dip switches requires disconnecting the KP-202C keypad and connecting KP-201 keypad.

DIP Number	Function code reserved to program DIP	Settings
DIP 1	F 113	0 to 15, Factory Default: 8
DIP 2	F114	0 to 15, Factory Default: 5
DIP 3	F115	0 to 15, Factory Default: 3
DIP 4	F116	0 to 15, Factory Default: 1
See the table below for program setting number information		

Example, to program DIP 1 to Energy Economy go to F 113 and program it to 15. To read more information about Energy Economy read F102 in the function code table.

Setting	Function Description	Details See Page
0	Disable DIP Switch	NA
1	ON: FWD Terminal activates start OFF: Keypad activates start	---
2	ON: FWD \& REV Terminals activates start OFF: Keypad activates start	---
3	ON: Terminals Vin or Iin adjust speed OFF: Keypad adjusts speed.	---
4	ON: Enable Keypad stop key OFF: Disable Keypad stop key	---
5	ON: Maximum frequency 50 Hz OFF: Maximum frequency 60 Hz	---
6	ON: Disable Stall prevention during Accel. OFF: Enable Stall prevention during Acc.	F074
7	ON: Disable DC braking* OFF: Enable DC braking*	Pg 23 F075

Setting	Function Description	Details See Page
8	ON: Carrier Frequency 2.5 kHz OFF: Carrier Frequency of F081	F081
9	ON: Pass-through short power interruptions OFF: Stop when power is interrupted	Pg 24 F078
10	ON: Coast to stop OFF: Controlled deceleration stop.	Pg 21 F082
11	ON: Disable Reverse OFF: Enable Reverse	Pg 21 F083
12	ON: Disable AVR OFF: Enable AVR	F093
13	ON: Disable motor overload protection OFF: Enable F046 overload program	F046
14	ON: Disable inverter overload protection OFF: Enable inverter overload protection	F094
15	ON: Enable Energy Economy OFF: Disable Energy Economy	Pg 32 F102

[^0]
Blank Page

Blank Page

Fault Code Table

| | Possible Problems | Recommendations |
| :--- | :--- | :--- | :--- | :--- |

Fault Code Table continued

								Fault Description	Possible Problems	Recommendations

Clearing Faults or Warnings (Reset)

When a fault or warning is displayed, correct the problem (i.e. troubleshoot) and then press the STOP / RESET key or engage the auxiliary reset terminal.

KP-201 and KP-202 have the same mounting dimensions

Dynamic Braking Resistor Dimensions

Part Number	Dimensions in/mm				
	L1	L2	W	H	D
MHL60W-100	4.5 "/115mm	3.9 "/100mm	1.57 "/40mm	0.79 "/20mm	0.2 "/ 5.3 mm
MHL60W-400	4.5 "/115mm	3.9 "/100mm	1.57 "/40mm	0.79 "/20mm	0.2 " $/ 5.3 \mathrm{~mm}$
MHL80W-100	5.5 "/140mm	4.9"/125mm	1.57 "/40mm	0.79 "/20mm	0.2 " $/ 5.3 \mathrm{~mm}$
MHL80W-400	5.5 "/140mm	4.9 "/125mm	1.57 "/40mm	0.79 "/20mm	0.2 " $/ 5.3 \mathrm{~mm}$
MHL100W-100	6.5 "/165mm	5.9 "/150mm	1.57 "/40mm	0.79 "/20mm	0.2 " $/ 5.3 \mathrm{~mm}$
MHL100W-400	6.5 "/165mm	5.9 "/150mm	1.57 "/40mm	0.79 "/20mm	0.2 " $/ 5.3 \mathrm{~mm}$
MHL120W-100	7.5 "/190mm	6.9 "/175mm	1.57 "/40mm	0.79 "/20mm	0.2 " $/ 5.3 \mathrm{~mm}$
MHL120W-400	7.5 "/190mm	6.9 "/175mm	1.57 "/40mm	0.79 "/20mm	0.2 " $/ 5.3 \mathrm{~mm}$
MHL150W-100	8.46 "/215mm	7.9 "/200mm	1.57 "/40mm	0.79 "/20mm	0.2 "/5.3mm
MHL150W-400	8.46"/215mm	7.9 "/200mm	1.57 "/40mm	0.79 "/20mm	0.2 " $/ 5.3 \mathrm{~mm}$
MHL200W-100	6.5 "/165mm	5.9 "/150mm	2.36 "/60mm	1.18 "/30mm	0.2 "/5.3mm
MHL200W-400	6.5 "/165mm	5.9 "/150mm	2.36 "/60mm	1.18 "/30mm	0.2 " $/ 5.3 \mathrm{~mm}$
MHL300W-100	8.46"/215mm	7.9 "/200mm	2.36 "/60mm	1.18 "/30mm	0.2 "/ 5.3 mm
MHL300W-400	8.46"/215mm	7.9 "/200mm	2.36 "/60mm	1.18 "/30mm	0.2 "/5.3mm
MHL400W-100	10.43 "/265mm	$9.85 " / 250 \mathrm{~mm}$	2.36 "/60mm	1.18 "/30mm	0.2 " $/ 5.3 \mathrm{~mm}$
MHL400W-400	10.43 "/265mm	$9.85 " / 250 \mathrm{~mm}$	2.36 "/60mm	1.18 "/30mm	0.2 " $/ 5.3 \mathrm{~mm}$
MHL500W-40	13.19 "/335mm	12.6 "/320mm	2.36 "/60mm	1.18 "/30mm	0.2 " $/ 5.3 \mathrm{~mm}$
MHL500W-100	$13.19 \times / 335 \mathrm{~mm}$	12.6 "/320mm	2.36 "/60mm	1.18 "/30mm	0.2 "/5.3mm
MHL1000W-40	15.75 "/400mm	15.16 "/385mm	3.9 "/100mm	1.97 "/50mm	0.42 "/ 10.6 mm
MHL1000W-100	15.75 "/400mm	15.16"/385mm	3.9 "/100mm	1.97"/50mm	0.42 "/10.6mm

1 to 5 HP Physical Diagram

Model Numbers

RM5G-2001
RM5G-2002
RM5G-2003
RM5G-2005
RM5G-4001
RM5G-4002
RM5G-4003
RM5G-4005

7.5 and 10 HP

Physical Diagram

Model Numbers
RM5G-2007
RM5G-2010
RM5G-4007
RM5G-4010

Physical Diagram

Model Numbers
RM5G-2015
RM5G-4015
RM5G-4020

A = DIA 35 mm (1.375")
B = DIA 50 mm (1.96")
C = DIA 23mm (0.90 ")
Physical
Diagram
Model Numbers
RM5G-2020
RM5G-2030
RM5G-2040
RM5G-4030
RM5G-4040
RM5G-4050
RM5G-4060

Model Number	W	W1	W2	H	H1	H2	D	D1	Ecrew Size
RM5G-2050 RM5G-2060 RM5G-2075 RM5G-4075 RM5G-4100	$\begin{gathered} 386 \mathrm{~mm} \\ 15.2 " \end{gathered}$	$\begin{gathered} 361 \mathrm{~mm} \\ 14.2 " \end{gathered}$	$\begin{gathered} \text { 275mm } \\ 10.8 " \end{gathered}$	$\begin{aligned} & \text { 584mm } \\ & 23 " \end{aligned}$	$\begin{aligned} & \text { 562mm } \\ & 22.13 " \end{aligned}$	$\begin{aligned} & \text { 539mm } \\ & 21.22 " \end{aligned}$	$\begin{gathered} 325 \mathrm{~mm} \\ 12.8^{\prime \prime} \end{gathered}$	$\begin{gathered} 170 \mathrm{~mm} \\ 6.7 " \end{gathered}$	$\begin{gathered} \text { M8 } \\ 5 / 16 " \end{gathered}$
RM5G-4150	$\begin{gathered} \hline 466 \mathrm{~mm} \\ 18.35 " \end{gathered}$	$\begin{gathered} \hline 418 \mathrm{~mm} \\ 16.46 " \end{gathered}$	$\begin{array}{c\|} \hline 275 \mathrm{~mm} \\ 10.83 " \end{array}$	$\begin{aligned} & \hline 685 \mathrm{~mm} \\ & 26.97 " \end{aligned}$	$\begin{array}{\|c\|} \hline 660 \mathrm{~mm} \\ 26 " \\ \hline \end{array}$	$\begin{gathered} \hline 630 \mathrm{~mm} \\ 24.8 " \end{gathered}$	$\begin{gathered} \hline 334 \mathrm{~mm} \\ 13.15 " \end{gathered}$	$\begin{gathered} \hline 172 \mathrm{~mm} \\ 6.77 \text { " } \end{gathered}$	$\begin{aligned} & \hline \text { M10 } \\ & 3 / 8 " \end{aligned}$
RM5G-4200	$\begin{gathered} 508 \mathrm{~mm} \\ 20 " \\ \hline \end{gathered}$	$\begin{aligned} & \text { 479mm } \\ & 18.86 " \end{aligned}$	$\begin{array}{l\|} \hline 275 \mathrm{~mm} \\ 10.83 " \end{array}$	$\begin{gathered} \hline 818 \mathrm{~mm} \\ 32.2 " \end{gathered}$	$\begin{gathered} 785 \mathrm{~mm} \\ 30.9 " \end{gathered}$	$\begin{gathered} 751 \mathrm{~mm} \\ 29.6 " \end{gathered}$	$\begin{gathered} \hline 366 \mathrm{~mm} \\ 13.23 " \end{gathered}$	$\begin{gathered} \text { 183mm } \\ 7.2^{\prime \prime} \end{gathered}$	$\begin{aligned} & \hline \text { M12 } \\ & 1 / 2 " \end{aligned}$
RM5G-4300	$\begin{aligned} & \text { 696mm } \\ & 27.4 " \end{aligned}$	$\begin{aligned} & \hline 654 \mathrm{~mm} \\ & 27.75 " \end{aligned}$	$\begin{array}{l\|} \hline 580 \mathrm{~mm} \\ 22.83 " \end{array}$	$\begin{gathered} 1000 \mathrm{~mm} \\ 39.37 " \end{gathered}$	$\begin{aligned} & 974 \mathrm{~mm} \\ & 38.35 " \end{aligned}$	$\begin{gathered} 929 \mathrm{~mm} \\ 36.58 " \end{gathered}$	$\begin{aligned} & \text { 405mm } \\ & 15.95 " \end{aligned}$	$\begin{gathered} \text { 224mm } \\ 8.82 " \end{gathered}$	$\begin{aligned} & \text { M12 } \\ & \text { 1/2" } \end{aligned}$
RM5G-4500	$\begin{aligned} & \text { 992mm } \\ & 39.06 " \end{aligned}$	$\begin{aligned} & \text { 954mm } \\ & 37.56 " \end{aligned}$	$\begin{array}{\|c\|} \hline 710 \mathrm{~mm} \\ 27.95 " \end{array}$	$\begin{gathered} 1030 \mathrm{~mm} \\ 40.55 " \end{gathered}$	$\begin{array}{\|c\|} \hline 1003 \mathrm{~mm} \\ 39.49 " \end{array}$	$\begin{gathered} 963 \mathrm{~mm} \\ 37.91 " \end{gathered}$	$\begin{array}{c\|} \hline 419 \mathrm{~mm} \\ 16.5 " \end{array}$	$\begin{gathered} \text { 235mm } \\ 9.25 " \end{gathered}$	$\begin{aligned} & \text { M12 } \\ & \text { 1/2" } \end{aligned}$

Blank Page

Function Code Record

Function Code	$\begin{aligned} & \hline \text { Factory } \\ & \text { Default } \\ & \text { def60 } \end{aligned}$	Notes:	Function Code	Factory Default def60	Notes:	Function Code	Factory Default def60	Notes:	Function Code	Factory Default def60	Notes:
F000	--		F040	1.00		F080	0		F120	1	
F001	3		F041	0.00		F081	Varies		F121	--	
F002	1		F042	1.00		F082	0		F122	0	
F003	1		F043	0.00		F083	0		F123	0	
F004	1		F044	0		F084	0.0		F124	1	
F005	1		F045	1.00		F085	0.0		F125	1	
F006	1		F046	1		F086	0.0		F126	0	
F007	20		F047	20		F087	0.0		F127	1.00	
F008	0		F048	Varies		F088	150		F128	0	
F009	60		F049	Varies		F089	0.5		F129	2	
F010	10		F050	0		F090	100		F130	1.00	
F011	20		F051	4P		F091	--		F131	1	
F012	30		F052	3		F092	0		F132	0.5	
F013	0		F053	4		F093	1		F134	--	
F014	0		F054	1		F094	3				
F015	0		F055	2		F095	Varies				
F016	0		F056	7		F096	0.5				
F017	6		F057	6		F097	0.0				
F018	60		F058	3		F098	1				
F019	Varies		F059	2		F099	1				
F020	Varies		F060	11		F100	2				
F021	Varies		F061	2		F101	3				
F022	Varies		F062	2		F102	1				
F023	Varies		F063	0.0		F103	3				
F024	Varies		F064	1.0		F104	15				
F025	Varies		F065	0		F105	15				
F026	Varies		F066	0		F106	0				
F027	Varies		F067	0		F107	0.00				
F028	Varies		F068	160		F108	10				
F029	0		F069	0.1		F109	--				
F030	0		F070	170		F110	1				
F031	60		F071	160		F111	20				
F032	0.5		F072	Varies		F112	17				
F033	Varies		F073	Varies		F113	8				
F034	60		F074	1		F114	5				
F035	Varies		F075	50		F115	3				
F036	0		F076	0.5		F116	1				
F037	0		F077	0.0		F117	0				
F038	0		F078	0		F118	0				
F039	0		F079	Varies		F119	0.01				

Note: \quad Green indicates the function code can be changed when the motor is running Gray indicates the function code can only be changed when the motor is stopped

Note: Green indicates the function code can be changed when the motor is running
Gray indicates the function code can only be changed when the motor is stopped
Page 56

¢02	F 061	Level Speed Detection Bandwidth for Vin or lin	$\begin{gathered} 0.0 \text { to } 10 \mathrm{~Hz}, \\ \text { (Factory Default: } 2 \mathrm{~Hz} \text {) } \end{gathered}$	If any of the terminals Y1, Y2, Relay 1 or Relay 2 are programmed to 2 and the frequency is within the bandwidth of F 061 in relation to Vin or lin, the terminal will signal	
	F 062	Level Speed Detection Bandwidth for Keypad	0.0 to 10 Hz, (Factory Default: 2 Hz)	If any of the terminals Y1, Y2, Relay 1 or Relay 2 are programmed to 2 and the frequency is within the bandwidth of F 062 in relation to the keypad setting, the terminal will signal	
O	F 063	Output Frequency Detection Signal	$\begin{gathered} 0 \text { to } 400 \mathrm{~Hz} \\ \text { (Factory Default: } 0.0 \mathrm{~Hz} \text {) } \end{gathered}$	If terminals Y1, Y2, Relay 1 or Relay 2 are programmed to 4, the setting of F 063 determines when to signal	
M	F 064	Automatic Torque Boost	0.0 to 25.5	(Factory Default: 1.0)	Automatic voltage boost during heavy load
¢	F 065	Overload Signal (OLO) Terminals Y1, Y2, Relays T1, T2	0) Disable 1) Enable (Factory Default: 0)	If terminals Y1, Y2, Relay T1 or T2 are programmed to signal OLO, F 065 must be set 1. (See F 058, F 059, F 060 or F 131 setting 5)	
	F 066	Ove	0) Signal Overload only when running at level speed 1) Signal Overload at any speed		Factory Defa
-	F 067	Fast Overload Stop	0) Disables Overload Stop 1) Enabled, Stops when overload is detected		Factory
	F 068	Fast Overload Amperage	30% to 200% of the RM5G rating when F069 time is exceeded		(Factory Default: 160\%)
	F 069	Overload Delay Time	0.1 to 10 Seconds	(Factory Defaut. 0.1)	
$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	F 070	Stall Prevention during Acceleration	30% to 200\% (Factory set: 170\%)	Percentage of Motor's rated current (F 048). If stall is detected acceleration will decline or speed levels.	
	F 071	Stall Prevention during Level Speed	$\begin{gathered} 30 \% \text { to } 200 \% \\ \text { (Factory set: } 160 \% \text {) } \end{gathered}$	Percentage of Motor's rated current (F 048). If stall is detected the speed is reduced.	
	F 072	Stall Recovery Acceleration Time	0.1 to 3200 sec . Factory Default Varies with HP	Acceleration Time after recovering from a stall at level speed.	
	F 073	Stall Prevention Deceleration Time during Level Speed	0.1 to 3200 sec. Factory Default Varies with HP	If stall conditions are decteded when running at level speed, the speed will be reduced at the deceleration rated of F073	
¢	F 074	Deceleration Stall Prevention	0) Disable Stall Prevention during deceleration 1) Enable Stall Prevention during deceleration		(Factory Default: 1)
$\left\|\begin{array}{l} \tilde{m} \\ 0 \\ 0 \end{array}\right\|$	F 075	DC Braking Amperage	0 to 150\% Of the RM5G ampere rating on data label		(Factory Default: 50\%)
	F 076	DC Braking Time	1 to 200 Sec. (Factory Default: 0.5)	If F082 is 2, while stopping, the motor will coast for the time setting of F 089 then DC is applied for the time of F076 Important: See page 21, section 4.17C	
	F 077	Pre-start Motor Magnetizing Time	0 to 20 Sec. (Factory Default: 0.0)	F 077 assists motors with staring problems. F077 delays start while applying DC to the motor. F 075 sets the DC Amperage	
[F 078	Power Interruption Response	0) Disable Passthrough (Factory Default: 0) 1) Enable Passthrough 2) Switch Off when power is interrupted, motor coasts to stop 3) Enable Controlled Deceleration Stop (See: F103, F104, F105, F106)		
~	F 079	Low Voltage Switch Off	220 V motor, 130 V to 192 V 480 V motor, 230 V to 384 V	V (Factory Default: 175V) (Factory Default: 320V)	
年	F 080	Limit of General Fault Passthroughs	0 to 16 (Factory Default: 0)	If a fault is detected and then quickly corrects without intervention. The RM5G will continue to run (passthrough). F080 sets the number of permissible passthroughs	
	F 081	Switching Frequency (i.e. Carrier Frequency)	Factory Default Varies with HP	0) 800 Hz 2) 5000 Hz 4) 10000 Hz 6) 15000 Hz 1) 2500 Hz 3) 7500 Hz 5) 12500 Hz	
N	F 082	Stop Parameters	0) Controlled Deceleration Stop (Factory Default: 1) Coast to Stop (i.e. Freewheeling) 2) Coast then DC Braking, See F 076 and $F 075$		
त	F 083	Reverse	0) Enable Reverse 1) Disable Reverse	(Facto	efault: 0)
0	F 084	Frequency Bypass 1	0 to 400 Hz , To avoid re	esonance problems	(Factory Default: 0.0)
	F 085	Frequency Bypass 2	0 to 400 Hz , To avoid re	esonance problems	(Factory Default: 0.0)
	F086	Frequency Bypass 3	0 to 400 Hz , To avoid re	esonance problems	(Factory Default: 0.0)
	F 087	Frequency Bypass Bandwidth	0 to 25.5 Hz (Factory Default: 0.0)	F 087 applies to F 084, F 085 and F 086. Example: To create a bypass from 30 to 35 Hz . Set F 084 to 32.5 Hz and F 087 to 2.5 Hz .	

[^1]

RM5G Elementary Diagram

[^0]: * Note: If F075 is set 50 or less DC braking is disabled, regardless of DIP switch setting.

[^1]: Note: Green indicates the function code can be changed when the motor is running Gray indicates the function code can only be changed when the motor is stopped

